Spaces:
Paused
Paused
import torch.nn as nn | |
import torch.nn.functional as F | |
from annotator.uniformer.mmcv.cnn import ConvModule, xavier_init | |
from ..builder import NECKS | |
class FPN(nn.Module): | |
"""Feature Pyramid Network. | |
This is an implementation of - Feature Pyramid Networks for Object | |
Detection (https://arxiv.org/abs/1612.03144) | |
Args: | |
in_channels (List[int]): Number of input channels per scale. | |
out_channels (int): Number of output channels (used at each scale) | |
num_outs (int): Number of output scales. | |
start_level (int): Index of the start input backbone level used to | |
build the feature pyramid. Default: 0. | |
end_level (int): Index of the end input backbone level (exclusive) to | |
build the feature pyramid. Default: -1, which means the last level. | |
add_extra_convs (bool | str): If bool, it decides whether to add conv | |
layers on top of the original feature maps. Default to False. | |
If True, its actual mode is specified by `extra_convs_on_inputs`. | |
If str, it specifies the source feature map of the extra convs. | |
Only the following options are allowed | |
- 'on_input': Last feat map of neck inputs (i.e. backbone feature). | |
- 'on_lateral': Last feature map after lateral convs. | |
- 'on_output': The last output feature map after fpn convs. | |
extra_convs_on_inputs (bool, deprecated): Whether to apply extra convs | |
on the original feature from the backbone. If True, | |
it is equivalent to `add_extra_convs='on_input'`. If False, it is | |
equivalent to set `add_extra_convs='on_output'`. Default to True. | |
relu_before_extra_convs (bool): Whether to apply relu before the extra | |
conv. Default: False. | |
no_norm_on_lateral (bool): Whether to apply norm on lateral. | |
Default: False. | |
conv_cfg (dict): Config dict for convolution layer. Default: None. | |
norm_cfg (dict): Config dict for normalization layer. Default: None. | |
act_cfg (str): Config dict for activation layer in ConvModule. | |
Default: None. | |
upsample_cfg (dict): Config dict for interpolate layer. | |
Default: `dict(mode='nearest')` | |
Example: | |
>>> import torch | |
>>> in_channels = [2, 3, 5, 7] | |
>>> scales = [340, 170, 84, 43] | |
>>> inputs = [torch.rand(1, c, s, s) | |
... for c, s in zip(in_channels, scales)] | |
>>> self = FPN(in_channels, 11, len(in_channels)).eval() | |
>>> outputs = self.forward(inputs) | |
>>> for i in range(len(outputs)): | |
... print(f'outputs[{i}].shape = {outputs[i].shape}') | |
outputs[0].shape = torch.Size([1, 11, 340, 340]) | |
outputs[1].shape = torch.Size([1, 11, 170, 170]) | |
outputs[2].shape = torch.Size([1, 11, 84, 84]) | |
outputs[3].shape = torch.Size([1, 11, 43, 43]) | |
""" | |
def __init__(self, | |
in_channels, | |
out_channels, | |
num_outs, | |
start_level=0, | |
end_level=-1, | |
add_extra_convs=False, | |
extra_convs_on_inputs=False, | |
relu_before_extra_convs=False, | |
no_norm_on_lateral=False, | |
conv_cfg=None, | |
norm_cfg=None, | |
act_cfg=None, | |
upsample_cfg=dict(mode='nearest')): | |
super(FPN, self).__init__() | |
assert isinstance(in_channels, list) | |
self.in_channels = in_channels | |
self.out_channels = out_channels | |
self.num_ins = len(in_channels) | |
self.num_outs = num_outs | |
self.relu_before_extra_convs = relu_before_extra_convs | |
self.no_norm_on_lateral = no_norm_on_lateral | |
self.fp16_enabled = False | |
self.upsample_cfg = upsample_cfg.copy() | |
if end_level == -1: | |
self.backbone_end_level = self.num_ins | |
assert num_outs >= self.num_ins - start_level | |
else: | |
# if end_level < inputs, no extra level is allowed | |
self.backbone_end_level = end_level | |
assert end_level <= len(in_channels) | |
assert num_outs == end_level - start_level | |
self.start_level = start_level | |
self.end_level = end_level | |
self.add_extra_convs = add_extra_convs | |
assert isinstance(add_extra_convs, (str, bool)) | |
if isinstance(add_extra_convs, str): | |
# Extra_convs_source choices: 'on_input', 'on_lateral', 'on_output' | |
assert add_extra_convs in ('on_input', 'on_lateral', 'on_output') | |
elif add_extra_convs: # True | |
if extra_convs_on_inputs: | |
# For compatibility with previous release | |
# TODO: deprecate `extra_convs_on_inputs` | |
self.add_extra_convs = 'on_input' | |
else: | |
self.add_extra_convs = 'on_output' | |
self.lateral_convs = nn.ModuleList() | |
self.fpn_convs = nn.ModuleList() | |
for i in range(self.start_level, self.backbone_end_level): | |
l_conv = ConvModule( | |
in_channels[i], | |
out_channels, | |
1, | |
conv_cfg=conv_cfg, | |
norm_cfg=norm_cfg if not self.no_norm_on_lateral else None, | |
act_cfg=act_cfg, | |
inplace=False) | |
fpn_conv = ConvModule( | |
out_channels, | |
out_channels, | |
3, | |
padding=1, | |
conv_cfg=conv_cfg, | |
norm_cfg=norm_cfg, | |
act_cfg=act_cfg, | |
inplace=False) | |
self.lateral_convs.append(l_conv) | |
self.fpn_convs.append(fpn_conv) | |
# add extra conv layers (e.g., RetinaNet) | |
extra_levels = num_outs - self.backbone_end_level + self.start_level | |
if self.add_extra_convs and extra_levels >= 1: | |
for i in range(extra_levels): | |
if i == 0 and self.add_extra_convs == 'on_input': | |
in_channels = self.in_channels[self.backbone_end_level - 1] | |
else: | |
in_channels = out_channels | |
extra_fpn_conv = ConvModule( | |
in_channels, | |
out_channels, | |
3, | |
stride=2, | |
padding=1, | |
conv_cfg=conv_cfg, | |
norm_cfg=norm_cfg, | |
act_cfg=act_cfg, | |
inplace=False) | |
self.fpn_convs.append(extra_fpn_conv) | |
# default init_weights for conv(msra) and norm in ConvModule | |
def init_weights(self): | |
for m in self.modules(): | |
if isinstance(m, nn.Conv2d): | |
xavier_init(m, distribution='uniform') | |
def forward(self, inputs): | |
assert len(inputs) == len(self.in_channels) | |
# build laterals | |
laterals = [ | |
lateral_conv(inputs[i + self.start_level]) | |
for i, lateral_conv in enumerate(self.lateral_convs) | |
] | |
# build top-down path | |
used_backbone_levels = len(laterals) | |
for i in range(used_backbone_levels - 1, 0, -1): | |
# In some cases, fixing `scale factor` (e.g. 2) is preferred, but | |
# it cannot co-exist with `size` in `F.interpolate`. | |
if 'scale_factor' in self.upsample_cfg: | |
laterals[i - 1] += F.interpolate(laterals[i], | |
**self.upsample_cfg) | |
else: | |
prev_shape = laterals[i - 1].shape[2:] | |
laterals[i - 1] += F.interpolate( | |
laterals[i], size=prev_shape, **self.upsample_cfg) | |
# build outputs | |
# part 1: from original levels | |
outs = [ | |
self.fpn_convs[i](laterals[i]) for i in range(used_backbone_levels) | |
] | |
# part 2: add extra levels | |
if self.num_outs > len(outs): | |
# use max pool to get more levels on top of outputs | |
# (e.g., Faster R-CNN, Mask R-CNN) | |
if not self.add_extra_convs: | |
for i in range(self.num_outs - used_backbone_levels): | |
outs.append(F.max_pool2d(outs[-1], 1, stride=2)) | |
# add conv layers on top of original feature maps (RetinaNet) | |
else: | |
if self.add_extra_convs == 'on_input': | |
extra_source = inputs[self.backbone_end_level - 1] | |
elif self.add_extra_convs == 'on_lateral': | |
extra_source = laterals[-1] | |
elif self.add_extra_convs == 'on_output': | |
extra_source = outs[-1] | |
else: | |
raise NotImplementedError | |
outs.append(self.fpn_convs[used_backbone_levels](extra_source)) | |
for i in range(used_backbone_levels + 1, self.num_outs): | |
if self.relu_before_extra_convs: | |
outs.append(self.fpn_convs[i](F.relu(outs[-1]))) | |
else: | |
outs.append(self.fpn_convs[i](outs[-1])) | |
return tuple(outs) | |