Spaces:
Paused
Paused
import annotator.uniformer.mmcv as mmcv | |
import torch.nn as nn | |
from annotator.uniformer.mmcv.cnn import ConvModule | |
from .make_divisible import make_divisible | |
class SELayer(nn.Module): | |
"""Squeeze-and-Excitation Module. | |
Args: | |
channels (int): The input (and output) channels of the SE layer. | |
ratio (int): Squeeze ratio in SELayer, the intermediate channel will be | |
``int(channels/ratio)``. Default: 16. | |
conv_cfg (None or dict): Config dict for convolution layer. | |
Default: None, which means using conv2d. | |
act_cfg (dict or Sequence[dict]): Config dict for activation layer. | |
If act_cfg is a dict, two activation layers will be configured | |
by this dict. If act_cfg is a sequence of dicts, the first | |
activation layer will be configured by the first dict and the | |
second activation layer will be configured by the second dict. | |
Default: (dict(type='ReLU'), dict(type='HSigmoid', bias=3.0, | |
divisor=6.0)). | |
""" | |
def __init__(self, | |
channels, | |
ratio=16, | |
conv_cfg=None, | |
act_cfg=(dict(type='ReLU'), | |
dict(type='HSigmoid', bias=3.0, divisor=6.0))): | |
super(SELayer, self).__init__() | |
if isinstance(act_cfg, dict): | |
act_cfg = (act_cfg, act_cfg) | |
assert len(act_cfg) == 2 | |
assert mmcv.is_tuple_of(act_cfg, dict) | |
self.global_avgpool = nn.AdaptiveAvgPool2d(1) | |
self.conv1 = ConvModule( | |
in_channels=channels, | |
out_channels=make_divisible(channels // ratio, 8), | |
kernel_size=1, | |
stride=1, | |
conv_cfg=conv_cfg, | |
act_cfg=act_cfg[0]) | |
self.conv2 = ConvModule( | |
in_channels=make_divisible(channels // ratio, 8), | |
out_channels=channels, | |
kernel_size=1, | |
stride=1, | |
conv_cfg=conv_cfg, | |
act_cfg=act_cfg[1]) | |
def forward(self, x): | |
out = self.global_avgpool(x) | |
out = self.conv1(out) | |
out = self.conv2(out) | |
return x * out | |