File size: 6,551 Bytes
8400add
 
95dbe7e
8400add
 
 
ee95e21
8400add
95dbe7e
8400add
 
 
e5327ee
 
 
 
 
 
 
 
11e466e
8400add
458ccb5
 
66716db
458ccb5
 
 
95dbe7e
 
458ccb5
8400add
 
 
95dbe7e
 
 
8400add
95dbe7e
 
 
 
 
 
 
8400add
95dbe7e
08bcb47
 
 
 
 
 
95dbe7e
 
11e466e
86f426b
8400add
95dbe7e
 
 
 
 
 
 
 
66716db
95dbe7e
 
 
 
 
 
 
 
 
 
 
 
66716db
95dbe7e
66716db
95dbe7e
 
 
 
 
 
66716db
95dbe7e
 
8400add
 
 
 
95dbe7e
 
 
8400add
 
 
 
a3a174a
 
8400add
08bcb47
8400add
95dbe7e
8400add
08bcb47
95dbe7e
8400add
95dbe7e
8400add
08bcb47
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8400add
 
 
35dad4a
8400add
35dad4a
08bcb47
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8400add
 
 
 
 
95dbe7e
8400add
 
 
 
08bcb47
 
 
8400add
08bcb47
 
8400add
 
95dbe7e
 
66716db
95dbe7e
 
66716db
95dbe7e
 
 
 
 
 
 
66716db
95dbe7e
 
 
 
 
 
 
 
 
 
 
 
8400add
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11e466e
66716db
 
 
 
3586d9f
11e466e
 
 
8400add
 
 
66716db
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
import os
import string
import copy
import gradio as gr
import PIL.Image
import torch
from transformers import BitsAndBytesConfig, pipeline
import re
import time

DESCRIPTION = "# LLaVA 🌋"

model_id = "llava-hf/llava-1.5-7b-hf"
quantization_config = BitsAndBytesConfig(
    load_in_4bit=True,
    bnb_4bit_compute_dtype=torch.float16
)
pipe = pipeline("image-to-text", model=model_id, model_kwargs={"quantization_config": quantization_config})



def extract_response_pairs(text):
    turns = re.split(r'(USER:|ASSISTANT:)', text)[1:]
    turns = [turn.strip() for turn in turns if turn.strip()]
    print(f"conv turns are {turns[1::2]}")
    conv_list = []
    for i in range(0, len(turns[1::2]), 2):
        if i + 1 < len(turns[1::2]):
            conv_list.append([turns[1::2][i].lstrip(":"), turns[1::2][i + 1].lstrip(":")])

    return conv_list



def add_text(history, text):
  history = history.append([text, None])
  return history, text

def infer(image, prompt,
            temperature,
            length_penalty,
            repetition_penalty,
            max_length,
            min_length,
            top_p):

  outputs = pipe(images=image, prompt=prompt,
                  generate_kwargs={"temperature":temperature,
                  "length_penalty":length_penalty,
                  "repetition_penalty":repetition_penalty,
                  "max_length":max_length,
                  "min_length":min_length,
                  "top_p":top_p})
  inference_output = outputs[0]["generated_text"]
  return inference_output



def bot(history_chat, text_input, image,
            temperature,
            length_penalty,
            repetition_penalty,
            max_length,
            min_length,
            top_p):
  chat_history = " ".join(history_chat) # history as a str to be passed to model
  chat_history = chat_history + f"USER: <image>\n{text_input}\nASSISTANT:" # add text input for prompting


  inference_result = infer(image, chat_history,
            temperature,
            length_penalty,
            repetition_penalty,
            max_length,
            min_length,
            top_p)
  # return inference and parse for new history
  chat_val = extract_response_pairs(inference_result)

  # create history list for yielding the last inference response
  chat_state_list = copy.deepcopy(chat_val)
  chat_state_list[-1][1] = "" # empty last response

  # add characters iteratively

  for character in chat_val[-1][1]:
    chat_state_list[-1][1] += character
    time.sleep(0.05)
    # yield history but with last response being streamed
    print(chat_state_list)
    yield chat_state_list


css = """
  #mkd {
    height: 500px;
    overflow: auto;
    border: 1px solid #ccc;
  }
  """
with gr.Blocks(css="style.css") as demo:
    gr.Markdown(DESCRIPTION)
    gr.Markdown("""## LLaVA, one of the greatest multimodal chat models is now available in Transformers with 4-bit quantization! ⚡️
    See the docs here: https://huggingface.co/docs/transformers/main/en/model_doc/llava.""")
    chatbot = gr.Chatbot(label="Chat", show_label=False)
    gr.Markdown("Input image and text and start chatting 👇")
    with gr.Row():

      image = gr.Image(type="pil")
      text_input = gr.Text(label="Chat Input", show_label=False, max_lines=3, container=False)

    history_chat = gr.State(value=[])

    with gr.Accordion(label="Advanced settings", open=False):
        temperature = gr.Slider(
            label="Temperature",
            info="Used with nucleus sampling.",
            minimum=0.5,
            maximum=1.0,
            step=0.1,
            value=1.0,
        )
        length_penalty = gr.Slider(
            label="Length Penalty",
            info="Set to larger for longer sequence, used with beam search.",
            minimum=-1.0,
            maximum=2.0,
            step=0.2,
            value=1.0,
        )
        repetition_penalty = gr.Slider(
            label="Repetition Penalty",
            info="Larger value prevents repetition.",
            minimum=1.0,
            maximum=5.0,
            step=0.5,
            value=1.5,
        )
        max_length = gr.Slider(
            label="Max Length",
            minimum=1,
            maximum=500,
            step=1,
            value=200,
        )
        min_length = gr.Slider(
            label="Minimum Length",
            minimum=1,
            maximum=100,
            step=1,
            value=1,
        )
        top_p = gr.Slider(
            label="Top P",
            info="Used with nucleus sampling.",
            minimum=0.5,
            maximum=1.0,
            step=0.1,
            value=0.9,
        )
    chat_output = [
        chatbot,
        history_chat
    ]


    chat_inputs = [
        image,
        text_input,
        temperature,
        length_penalty,
        repetition_penalty,
        max_length,
        min_length,
        top_p,
        history_chat
    ]
    with gr.Row():
      clear_chat_button = gr.Button("Clear")
      cancel_btn = gr.Button("Stop Generation")
      chat_button = gr.Button("Submit", variant="primary")
      
    chat_event1 = chat_button.click(add_text, [chatbot, text_input], [chatbot, text_input]).then(bot, [chatbot, text_input,
                                                                                           image, temperature,
        length_penalty,
        repetition_penalty,
        max_length,
        min_length,
        top_p], chatbot)
    
    chat_event2 = text_input.submit(
        add_text,
        [chatbot, text_input],
        [chatbot, text_input]
    ).then(
        fn=bot,
        inputs=[chatbot, text_input, image, temperature,
        length_penalty,
        repetition_penalty,
        max_length,
        min_length,
        top_p],
        outputs=chatbot
    )
    clear_chat_button.click(
        fn=lambda: ([], []),
        inputs=None,
        outputs=[
            chatbot,
            history_chat
        ],
        queue=False,
        api_name="clear",
    )
    image.change(
        fn=lambda: ([], []),
        inputs=None,
        outputs=[
            chatbot,
            history_chat
        ],
        queue=False)
    cancel_btn.click(
        None, [], [], 
        cancels=[chat_event1, chat_event2]
    )  
    examples = [["./examples/baklava.png", "How to make this pastry?"],["./examples/bee.png","Describe this image."]]
    gr.Examples(examples=examples, inputs=[image, text_input, chat_inputs])


    

if __name__ == "__main__":
    demo.queue(max_size=10).launch(debug=True)