Upload 5 files
Browse files- app.py +37 -48
- controlled_summarization.py +59 -0
- dataset_extraction.py +1 -1
- description.py +23 -3
app.py
CHANGED
@@ -2,12 +2,46 @@ import gradio as gr
|
|
2 |
from description import *
|
3 |
|
4 |
from reference_string_parsing import *
|
5 |
-
from
|
6 |
-
from dataset_extraction import *
|
7 |
|
8 |
with gr.Blocks(css="#htext span {white-space: pre-line}") as demo:
|
9 |
gr.Markdown("# Gradio Demo for SciAssist")
|
10 |
with gr.Tabs():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
# Reference String Parsing
|
12 |
with gr.TabItem("Reference String Parsing"):
|
13 |
with gr.Box():
|
@@ -60,51 +94,6 @@ with gr.Blocks(css="#htext span {white-space: pre-line}") as demo:
|
|
60 |
outputs=rsp_str_output
|
61 |
)
|
62 |
|
63 |
-
# Single Document Summarization
|
64 |
-
with gr.TabItem("Single Document Summarization"):
|
65 |
-
with gr.Box():
|
66 |
-
gr.Markdown(ssum_str_md)
|
67 |
-
with gr.Row():
|
68 |
-
with gr.Column():
|
69 |
-
ssum_str = gr.Textbox(label="Input String")
|
70 |
-
with gr.Column():
|
71 |
-
ssum_str_beams = gr.Number(label="Number of beams for beam search", value=1, precision=0)
|
72 |
-
ssum_str_sequences = gr.Number(label="Number of generated summaries", value=1, precision=0)
|
73 |
-
with gr.Row():
|
74 |
-
ssum_str_btn = gr.Button("Generate")
|
75 |
-
ssum_str_output = gr.Textbox(
|
76 |
-
elem_id="htext",
|
77 |
-
label="Summary",
|
78 |
-
)
|
79 |
-
ssum_str_examples = gr.Examples(examples=[[ssum_str_example, 1, 1], ],
|
80 |
-
inputs=[ssum_str, ssum_str_beams, ssum_str_sequences])
|
81 |
-
with gr.Box():
|
82 |
-
gr.Markdown(ssum_file_md)
|
83 |
-
with gr.Row():
|
84 |
-
with gr.Column():
|
85 |
-
ssum_file = gr.File(label="Input File")
|
86 |
-
with gr.Column():
|
87 |
-
ssum_file_beams = gr.Number(label="Number of beams for beam search", value=1, precision=0)
|
88 |
-
ssum_file_sequences = gr.Number(label="Number of generated summaries", value=1, precision=0)
|
89 |
-
with gr.Row():
|
90 |
-
ssum_file_btn = gr.Button("Generate")
|
91 |
-
ssum_file_output = gr.Textbox(
|
92 |
-
elem_id="htext",
|
93 |
-
label="Summary",
|
94 |
-
)
|
95 |
-
ssum_file_examples = gr.Examples(examples=[["examples/BERT_body.txt", 10, 2],["examples/BERT_paper.pdf", 1, 1]],
|
96 |
-
inputs=[ssum_file, ssum_file_beams, ssum_file_sequences])
|
97 |
-
|
98 |
-
ssum_file_btn.click(
|
99 |
-
fn=ssum_for_file,
|
100 |
-
inputs=[ssum_file, ssum_file_beams, ssum_file_sequences],
|
101 |
-
outputs=ssum_file_output
|
102 |
-
)
|
103 |
-
ssum_str_btn.click(
|
104 |
-
fn=ssum_for_str,
|
105 |
-
inputs=[ssum_str, ssum_str_beams, ssum_str_sequences],
|
106 |
-
outputs=ssum_str_output
|
107 |
-
)
|
108 |
|
109 |
# Dataset Extraction
|
110 |
with gr.TabItem("Dataset Mentions Extraction"):
|
@@ -153,4 +142,4 @@ with gr.Blocks(css="#htext span {white-space: pre-line}") as demo:
|
|
153 |
)
|
154 |
|
155 |
|
156 |
-
demo.launch()
|
|
|
2 |
from description import *
|
3 |
|
4 |
from reference_string_parsing import *
|
5 |
+
from controlled_summarization import *
|
|
|
6 |
|
7 |
with gr.Blocks(css="#htext span {white-space: pre-line}") as demo:
|
8 |
gr.Markdown("# Gradio Demo for SciAssist")
|
9 |
with gr.Tabs():
|
10 |
+
|
11 |
+
# Controlled Summarization
|
12 |
+
with gr.TabItem("Summarization"):
|
13 |
+
|
14 |
+
with gr.Box():
|
15 |
+
gr.Markdown(ctrlsum_file_md)
|
16 |
+
with gr.Row():
|
17 |
+
with gr.Column():
|
18 |
+
ctrlsum_file = gr.File(label="Input File")
|
19 |
+
ctrlsum_str = gr.TextArea(label="Input String")
|
20 |
+
with gr.Column():
|
21 |
+
gr.Markdown("* Length 0 will exert no control over length.")
|
22 |
+
# ctrlsum_file_beams = gr.Number(label="Number of beams for beam search", value=1, precision=0)
|
23 |
+
# ctrlsum_file_sequences = gr.Number(label="Number of generated summaries", value=1, precision=0)
|
24 |
+
ctrlsum_file_length = gr.Slider(0,300,step=50, label="Length")
|
25 |
+
ctrlsum_file_keywords = gr.Textbox(label="Keywords",max_lines=1)
|
26 |
+
with gr.Row():
|
27 |
+
ctrlsum_file_btn = gr.Button("Generate")
|
28 |
+
ctrlsum_file_output = gr.Textbox(
|
29 |
+
elem_id="htext",
|
30 |
+
label="Summary",
|
31 |
+
)
|
32 |
+
ctrlsum_file_examples = gr.Examples(examples=[["examples/BERT_body.txt", 100, "", ""],["examples/BERT_paper.pdf", 0, "BERT"]],
|
33 |
+
inputs=[ctrlsum_file, ctrlsum_file_length, ctrlsum_file_keywords])
|
34 |
+
|
35 |
+
ctrlsum_file_btn.click(
|
36 |
+
fn=ctrlsum_for_file,
|
37 |
+
inputs=[ctrlsum_file, ctrlsum_file_length, ctrlsum_file_keywords, ctrlsum_str],
|
38 |
+
outputs=[ctrlsum_file_output, ctrlsum_str]
|
39 |
+
)
|
40 |
+
def clear():
|
41 |
+
return None,0,None
|
42 |
+
|
43 |
+
ctrlsum_file.change(clear, inputs=None,outputs=[ctrlsum_str,ctrlsum_file_length,ctrlsum_file_keywords])
|
44 |
+
|
45 |
# Reference String Parsing
|
46 |
with gr.TabItem("Reference String Parsing"):
|
47 |
with gr.Box():
|
|
|
94 |
outputs=rsp_str_output
|
95 |
)
|
96 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
97 |
|
98 |
# Dataset Extraction
|
99 |
with gr.TabItem("Dataset Mentions Extraction"):
|
|
|
142 |
)
|
143 |
|
144 |
|
145 |
+
demo.launch(share=False)
|
controlled_summarization.py
ADDED
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import List, Tuple
|
2 |
+
import torch
|
3 |
+
from SciAssist import Summarization
|
4 |
+
|
5 |
+
device = "gpu" if torch.cuda.is_available() else "cpu"
|
6 |
+
|
7 |
+
ctrlsum_pipeline = Summarization(os_name="nt",checkpoint="google/flan-t5-base")
|
8 |
+
|
9 |
+
|
10 |
+
def ctrlsum_for_str(input,length=None, keywords=None) -> List[Tuple[str, str]]:
|
11 |
+
|
12 |
+
if keywords is not None:
|
13 |
+
keywords = keywords.strip().split(",")
|
14 |
+
if keywords[0] == "":
|
15 |
+
keywords = None
|
16 |
+
if length==0 or length is None:
|
17 |
+
length = None
|
18 |
+
results = ctrlsum_pipeline.predict(input, type="str",
|
19 |
+
length=length, keywords=keywords)
|
20 |
+
|
21 |
+
output = []
|
22 |
+
for res in results["summary"]:
|
23 |
+
output.append(f"{res}\n\n")
|
24 |
+
return "".join(output)
|
25 |
+
|
26 |
+
|
27 |
+
def ctrlsum_for_file(input, length=None, keywords=None, text="") -> List[Tuple[str, str]]:
|
28 |
+
if input == None:
|
29 |
+
if text=="":
|
30 |
+
return None
|
31 |
+
else:
|
32 |
+
return ctrlsum_for_str(text,length,keywords),text
|
33 |
+
else:
|
34 |
+
filename = input.name
|
35 |
+
if keywords is not None:
|
36 |
+
keywords = keywords.strip().split(",")
|
37 |
+
if keywords[0] == "":
|
38 |
+
keywords = None
|
39 |
+
if length==0:
|
40 |
+
length = None
|
41 |
+
# Identify the format of input and parse reference strings
|
42 |
+
if filename[-4:] == ".txt":
|
43 |
+
results = ctrlsum_pipeline.predict(filename, type="txt",
|
44 |
+
save_results=False,
|
45 |
+
length=length, keywords=keywords)
|
46 |
+
elif filename[-4:] == ".pdf":
|
47 |
+
results = ctrlsum_pipeline.predict(filename,
|
48 |
+
save_results=False, length=length, keywords=keywords)
|
49 |
+
else:
|
50 |
+
return [("File Format Error !", None)]
|
51 |
+
|
52 |
+
output = []
|
53 |
+
for res in results["summary"]:
|
54 |
+
output.append(f"{res}\n\n")
|
55 |
+
return "".join(output), results["raw_text"]
|
56 |
+
|
57 |
+
|
58 |
+
|
59 |
+
ctrlsum_str_example = "Language model pre-training has been shown to be effective for improving many natural language processing tasks ( Dai and Le , 2015 ; Peters et al. , 2018a ; Radford et al. , 2018 ; Howard and Ruder , 2018 ) . These include sentence-level tasks such as natural language inference ( Bowman et al. , 2015 ; Williams et al. , 2018 ) and paraphrasing ( Dolan and Brockett , 2005 ) , which aim to predict the relationships between sentences by analyzing them holistically , as well as token-level tasks such as named entity recognition and question answering , where models are required to produce fine-grained output at the token level ( Tjong Kim Sang and De Meulder , 2003 ; Rajpurkar et al. , 2016 ) . There are two existing strategies for applying pre-trained language representations to downstream tasks : feature-based and fine-tuning . The feature-based approach , such as ELMo ( Peters et al. , 2018a ) , uses task-specific architectures that include the pre-trained representations as additional features . The fine-tuning approach , such as the Generative Pre-trained Transformer ( OpenAI GPT ) ( Radford et al. , 2018 ) , introduces minimal task-specific parameters , and is trained on the downstream tasks by simply fine-tuning all pretrained parameters . The two approaches share the same objective function during pre-training , where they use unidirectional language models to learn general language representations . We argue that current techniques restrict the power of the pre-trained representations , especially for the fine-tuning approaches . The major limitation is that standard language models are unidirectional , and this limits the choice of architectures that can be used during pre-training . For example , in OpenAI GPT , the authors use a left-toright architecture , where every token can only attend to previous tokens in the self-attention layers of the Transformer ( Vaswani et al. , 2017 ) . Such restrictions are sub-optimal for sentence-level tasks , and could be very harmful when applying finetuning based approaches to token-level tasks such as question answering , where it is crucial to incorporate context from both directions . In this paper , we improve the fine-tuning based approaches by proposing BERT : Bidirectional Encoder Representations from Transformers . BERT alleviates the previously mentioned unidirectionality constraint by using a `` masked language model '' ( MLM ) pre-training objective , inspired by the Cloze task ( Taylor , 1953 ) . The masked language model randomly masks some of the tokens from the input , and the objective is to predict the original vocabulary id of the masked arXiv:1810.04805v2 [ cs.CL ] 24 May 2019 word based only on its context . Unlike left-toright language model pre-training , the MLM objective enables the representation to fuse the left and the right context , which allows us to pretrain a deep bidirectional Transformer . In addition to the masked language model , we also use a `` next sentence prediction '' task that jointly pretrains text-pair representations . The contributions of our paper are as follows : • We demonstrate the importance of bidirectional pre-training for language representations . Unlike Radford et al . ( 2018 ) , which uses unidirectional language models for pre-training , BERT uses masked language models to enable pretrained deep bidirectional representations . This is also in contrast to Peters et al . ( 2018a ) , which uses a shallow concatenation of independently trained left-to-right and right-to-left LMs . • We show that pre-trained representations reduce the need for many heavily-engineered taskspecific architectures . BERT is the first finetuning based representation model that achieves state-of-the-art performance on a large suite of sentence-level and token-level tasks , outperforming many task-specific architectures . • BERT advances the state of the art for eleven NLP tasks . The code and pre-trained models are available at https : //github.com/ google-research/bert . "
|
dataset_extraction.py
CHANGED
@@ -6,7 +6,7 @@ device = "gpu" if torch.cuda.is_available() else "cpu"
|
|
6 |
de_pipeline = DatasetExtraction(os_name="nt")
|
7 |
|
8 |
|
9 |
-
def de_for_str(input)
|
10 |
results = de_pipeline.extract(input, type="str", save_results=False)
|
11 |
|
12 |
output = []
|
|
|
6 |
de_pipeline = DatasetExtraction(os_name="nt")
|
7 |
|
8 |
|
9 |
+
def de_for_str(input):
|
10 |
results = de_pipeline.extract(input, type="str", save_results=False)
|
11 |
|
12 |
output = []
|
description.py
CHANGED
@@ -16,8 +16,6 @@ To **test on a file**, the input can be:
|
|
16 |
ssum_str_md = '''
|
17 |
To **test on strings**, simply input a string.
|
18 |
|
19 |
-
**Note**: The **number of beams** should be **divisible** by the **number of generated summaries** for group beam search.
|
20 |
-
|
21 |
'''
|
22 |
|
23 |
ssum_file_md = '''
|
@@ -28,10 +26,32 @@ To **test on a file**, the input can be:
|
|
28 |
- A pdf file which contains a whole scientific documention without any preprocessing(including title, author, body text...).
|
29 |
|
30 |
|
31 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
|
33 |
'''
|
34 |
|
|
|
|
|
35 |
de_str_md = '''
|
36 |
To **test on strings**, simply input a string.
|
37 |
'''
|
|
|
16 |
ssum_str_md = '''
|
17 |
To **test on strings**, simply input a string.
|
18 |
|
|
|
|
|
19 |
'''
|
20 |
|
21 |
ssum_file_md = '''
|
|
|
26 |
- A pdf file which contains a whole scientific documention without any preprocessing(including title, author, body text...).
|
27 |
|
28 |
|
29 |
+
'''
|
30 |
+
|
31 |
+
# - The **number of beams** should be **divisible** by the **number of generated summaries** for group beam search.
|
32 |
+
ctrlsum_str_md = '''
|
33 |
+
To **test on strings**, simply input a string.
|
34 |
+
|
35 |
+
**Note**:
|
36 |
+
|
37 |
+
- Length 0 will exert no control over length.
|
38 |
+
|
39 |
+
|
40 |
+
'''
|
41 |
+
|
42 |
+
ctrlsum_file_md = '''
|
43 |
+
To **test on a file**, the input can be:
|
44 |
+
|
45 |
+
- A txt file which contains the content to be summarized.
|
46 |
+
|
47 |
+
- A pdf file which contains a whole scientific documention without any preprocessing(including title, author, body text...).
|
48 |
+
|
49 |
+
|
50 |
|
51 |
'''
|
52 |
|
53 |
+
|
54 |
+
|
55 |
de_str_md = '''
|
56 |
To **test on strings**, simply input a string.
|
57 |
'''
|