Auto_Classifier / app.py
kisooofficial's picture
Duplicate from minseokKoo/Auto_Classifier
0c774af
raw
history blame
7.54 kB
import pandas as pd
import numpy as np
import re
import os
import sys
import random
import transformers
from transformers import AutoTokenizer, AutoModelForSequenceClassification
from transformers import RobertaTokenizer, RobertaForSequenceClassification
import torch
import torch.nn.functional as F
from torch.utils.data import Dataset, DataLoader, RandomSampler, SequentialSampler
from transformers import T5Tokenizer, T5ForConditionalGeneration
import gradio as gr
def greet(co):
code_text = []
code_text.append(co)
code_text = ' '.join(code_text)
code_text = re.sub('\/\*[\S\s]*\*\/', '', code_text)
code_text = re.sub('\/\/.*', '', code_text)
code_text = re.sub('(\\\\n)+', '\\n', code_text)
# 1. CFA-CodeBERTa-small.pt -> CodeBERTa-small-v1 finetunig model
path = os.getcwd() + '/models/CFA-CodeBERTa-small.pt'
tokenizer = AutoTokenizer.from_pretrained("huggingface/CodeBERTa-small-v1")
input_ids = tokenizer.encode(
code_text, max_length=512, truncation=True, padding='max_length')
input_ids = torch.tensor([input_ids])
model = RobertaForSequenceClassification.from_pretrained(
path, num_labels=2)
model.to('cpu')
pred_1 = model(input_ids)[0].detach().cpu().numpy()[0]
# model(input_ids)[0].argmax().detach().cpu().numpy().item()
# 2. CFA-codebert-c.pt -> codebert-c finetuning model
path = os.getcwd() + '/models/CFA-codebert-c.pt'
tokenizer = AutoTokenizer.from_pretrained(path)
input_ids = tokenizer(code_text, padding=True, max_length=512,
truncation=True, return_token_type_ids=True)['input_ids']
input_ids = torch.tensor([input_ids])
model = AutoModelForSequenceClassification.from_pretrained(
path, num_labels=2)
model.to('cpu')
pred_2 = model(input_ids)[0].detach().cpu().numpy()[0]
# 3. CFA-codebert-c-v2.pt -> undersampling + codebert-c finetuning model
path = os.getcwd() + '/models/CFA-codebert-c-v2.pt'
tokenizer = RobertaTokenizer.from_pretrained(path)
input_ids = tokenizer(code_text, padding=True, max_length=512,
truncation=True, return_token_type_ids=True)['input_ids']
input_ids = torch.tensor([input_ids])
model = RobertaForSequenceClassification.from_pretrained(
path, num_labels=2)
model.to('cpu')
pred_3 = model(input_ids)[0].detach().cpu().numpy()
# 4. codeT5 finetuning model
path = os.getcwd() + '/models/CFA-codeT5'
model_params = {
# model_type: t5-base/t5-large
"MODEL": path,
"TRAIN_BATCH_SIZE": 8, # training batch size
"VALID_BATCH_SIZE": 8, # validation batch size
"VAL_EPOCHS": 1, # number of validation epochs
"MAX_SOURCE_TEXT_LENGTH": 512, # max length of source text
"MAX_TARGET_TEXT_LENGTH": 3, # max length of target text
"SEED": 2022, # set seed for reproducibility
}
data = pd.DataFrame({'code': [code_text]})
pred_4 = T5Trainer(
dataframe=data,
source_text="code",
model_params=model_params
)
pred_4 = int(pred_4[0])
# ensemble
tot_result = (pred_1 * 0.8 + pred_2 * 0.1 +
pred_3 * 0.1 + pred_4 * 0.1).argmax()
if tot_result == 0:
return "false positive !!"
else:
return "true positive !!"
# codeT5
class YourDataSetClass(Dataset):
def __init__(
self, dataframe, tokenizer, source_len, source_text):
self.tokenizer = tokenizer
self.data = dataframe
self.source_len = source_len
# self.summ_len = target_len
# self.target_text = self.data[target_text]
self.source_text = self.data[source_text]
def __len__(self):
return len(self.source_text)
def __getitem__(self, index):
source_text = str(self.source_text[index])
source_text = " ".join(source_text.split())
source = self.tokenizer.batch_encode_plus(
[source_text],
max_length=self.source_len,
pad_to_max_length=True,
truncation=True,
padding="max_length",
return_tensors="pt",
)
source_ids = source["input_ids"].squeeze()
source_mask = source["attention_mask"].squeeze()
return {
"source_ids": source_ids.to(dtype=torch.long),
"source_mask": source_mask.to(dtype=torch.long),
}
def validate(epoch, tokenizer, model, device, loader):
model.eval()
predictions = []
with torch.no_grad():
for _, data in enumerate(loader, 0):
ids = data['source_ids'].to(device, dtype=torch.long)
mask = data['source_mask'].to(device, dtype=torch.long)
generated_ids = model.generate(
input_ids=ids,
attention_mask=mask,
max_length=150,
num_beams=2,
repetition_penalty=2.5,
length_penalty=1.0,
early_stopping=True
)
preds = [tokenizer.decode(
g, skip_special_tokens=True, clean_up_tokenization_spaces=True) for g in generated_ids]
if ((preds != '0') | (preds != '1')):
preds = '0'
predictions.extend(preds)
return predictions
def T5Trainer(dataframe, source_text, model_params, step="test",):
torch.manual_seed(model_params["SEED"]) # pytorch random seed
np.random.seed(model_params["SEED"]) # numpy random seed
torch.backends.cudnn.deterministic = True
tokenizer = T5Tokenizer.from_pretrained(model_params["MODEL"])
model = T5ForConditionalGeneration.from_pretrained(model_params["MODEL"])
model = model.to('cpu')
dataframe = dataframe[[source_text]]
val_dataset = dataframe
val_set = YourDataSetClass(
val_dataset, tokenizer, model_params["MAX_SOURCE_TEXT_LENGTH"], source_text)
val_params = {
'batch_size': model_params["VALID_BATCH_SIZE"],
'shuffle': False,
'num_workers': 0
}
val_loader = DataLoader(val_set, **val_params)
for epoch in range(model_params["VAL_EPOCHS"]):
predictions = validate(epoch, tokenizer, model, 'cpu', val_loader)
return predictions
#################################################################################
'''demo = gr.Interface(
fn = greet,
inputs = "text",
outputs= "number")
demo.launch(share=True)
'''
with gr.Blocks() as demo1:
gr.Markdown(
"""
<h1 align="center">
False-Alarm-Detector
</h1>
""")
gr.Markdown(
"""
정적 분석기로 오류라고 보고된 코드를 입력하면,
오류가 True-positive 인지 False-positive 인지 분류 해 주는 프로그램이다.
""")
with gr.Accordion(label='모델에 대한 설명 ( 여기를 클릭 하시오. )',open=False):
gr.Markdown(
"""
총 3개의 모델을 사용하였다.
1. codeBERTa-small-v1
- codeBERTa-small-v1 설명
2. codeBERT - C
- codeBERT - C 설명
3. codeT5
- codeT5 설명
"""
)
with gr.Row():
with gr.Column():
inputs_1 = gr.Textbox(placeholder="코드를 입력하시오.", label='Code')
with gr.Row():
btn = gr.Button("결과 출력")
with gr.Column():
outputs_1 = gr.Text(label = 'Result')
btn.click(fn = greet, inputs = inputs_1, outputs= outputs_1)
if __name__ == "__main__":
demo1.launch()