Spaces:
Sleeping
Sleeping
kkhushisaid
commited on
Commit
•
4c63c59
1
Parent(s):
ac2a8e3
Upload 9 files
Browse files- LDA.pkl +0 -0
- QDA.pkl +0 -0
- README.md +12 -0
- Tree.pkl +0 -0
- app.py +94 -0
- gitattributes +34 -0
- heart.dat +270 -0
- requirements.txt +1 -0
- svm.pkl +0 -0
LDA.pkl
ADDED
Binary file (1.33 kB). View file
|
|
QDA.pkl
ADDED
Binary file (6.56 kB). View file
|
|
README.md
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
title: Heart Disease
|
3 |
+
emoji: 🦀
|
4 |
+
colorFrom: pink
|
5 |
+
colorTo: purple
|
6 |
+
sdk: gradio
|
7 |
+
sdk_version: 3.23.0
|
8 |
+
app_file: app.py
|
9 |
+
pinned: false
|
10 |
+
---
|
11 |
+
|
12 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
Tree.pkl
ADDED
Binary file (4.88 kB). View file
|
|
app.py
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import pickle
|
3 |
+
import pandas as pd
|
4 |
+
|
5 |
+
# load the data
|
6 |
+
heart=pd.read_csv('heart.dat', header=None, sep=' ', names=['age', 'sex', 'cp', 'trestbps', 'chol',
|
7 |
+
'fbs', 'restecg', 'thalach', 'exang',
|
8 |
+
'oldpeak', 'slope', 'ca', 'thal', 'heart disease'])
|
9 |
+
|
10 |
+
# load the saved models
|
11 |
+
with open('Tree.pkl', 'rb') as f:
|
12 |
+
tree_model = pickle.load(f)
|
13 |
+
|
14 |
+
with open('svm.pkl', 'rb') as f:
|
15 |
+
svm_model = pickle.load(f)
|
16 |
+
|
17 |
+
with open('QDA.pkl', 'rb') as f:
|
18 |
+
qda_model = pickle.load(f)
|
19 |
+
|
20 |
+
with open('MLP.pkl', 'rb') as f:
|
21 |
+
mlp_model = pickle.load(f)
|
22 |
+
|
23 |
+
with open('Log.pkl', 'rb') as f:
|
24 |
+
log_model = pickle.load(f)
|
25 |
+
|
26 |
+
with open('LDA.pkl', 'rb') as f:
|
27 |
+
lda_model = pickle.load(f)
|
28 |
+
|
29 |
+
with open('For.pkl', 'rb') as f:
|
30 |
+
for_model = pickle.load(f)
|
31 |
+
|
32 |
+
# Define the function to make predictions
|
33 |
+
def make_prediction(age, sex, cp, trestbps, chol, fbs, restecg, thalach, exang, oldpeak, slope, ca, thal, model_name):
|
34 |
+
# Create a pandas DataFrame from the inputs
|
35 |
+
input_data = pd.DataFrame({
|
36 |
+
'age': [age],
|
37 |
+
'sex': [sex],
|
38 |
+
'cp': [cp],
|
39 |
+
'trestbps': [trestbps],
|
40 |
+
'chol': [chol],
|
41 |
+
'fbs': [fbs],
|
42 |
+
'restecg': [restecg],
|
43 |
+
'thalach': [thalach],
|
44 |
+
'exang': [exang],
|
45 |
+
'oldpeak': [oldpeak],
|
46 |
+
'slope': [slope],
|
47 |
+
'ca': [ca],
|
48 |
+
'thal': [thal]
|
49 |
+
})
|
50 |
+
|
51 |
+
# feature scaling
|
52 |
+
from sklearn.model_selection import train_test_split
|
53 |
+
X = heart.drop('heart disease', axis=1)
|
54 |
+
y = heart['heart disease']
|
55 |
+
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, random_state=42, stratify=y)
|
56 |
+
from sklearn.preprocessing import StandardScaler
|
57 |
+
scaler = StandardScaler()
|
58 |
+
X_train_std = scaler.fit_transform(X_train)
|
59 |
+
|
60 |
+
# choose the model and make prediction
|
61 |
+
model_dict = {'Decision_Tree': tree_model,
|
62 |
+
'QDA': qda_model,
|
63 |
+
'Artificial_Neural_Networks': mlp_model,
|
64 |
+
'Logistic_Regression': log_model,
|
65 |
+
'LDA': lda_model,
|
66 |
+
'Random_Forest': for_model,
|
67 |
+
'SVM': svm_model}
|
68 |
+
model = model_dict[model_name]
|
69 |
+
input_data_std = scaler.transform(input_data)
|
70 |
+
probas = model.predict_proba(input_data_std)
|
71 |
+
outtext={1:'no heart_disease', 2:'heart disease'}
|
72 |
+
return {f"Probability of Class {i+1}": proba for i, proba in enumerate(probas[0])}
|
73 |
+
|
74 |
+
# Create the Gradio interface
|
75 |
+
inputs = [
|
76 |
+
gr.inputs.Number(label='age'),
|
77 |
+
gr.inputs.Radio(choices=[0,1], label='sex'),
|
78 |
+
gr.inputs.Dropdown(choices=[1,2,3,4], label='chest pain type'),
|
79 |
+
gr.inputs.Number(label='resting blood pressure'),
|
80 |
+
gr.inputs.Number(label='serum cholestoral'),
|
81 |
+
gr.inputs.Radio(choices=[0,1], label='fasting blood sugar'),
|
82 |
+
gr.inputs.Radio(choices=[0,1,2], label='resting electrocardiographic'),
|
83 |
+
gr.inputs.Number(label='maximum heart rate'),
|
84 |
+
gr.inputs.Radio(choices=[0,1], label='exercise induced angina'),
|
85 |
+
gr.inputs.Number(label='oldpeak'),
|
86 |
+
gr.inputs.Dropdown(choices=[1,2,3], label='slope ST'),
|
87 |
+
gr.inputs.Dropdown(choices=[0,1,2,3], label='major vessels'),
|
88 |
+
gr.inputs.Dropdown(choices=[3,6,7], label='thal'),
|
89 |
+
gr.inputs.Dropdown(choices=['Decision_Tree', 'QDA', 'Artificial_Neural_Networks', 'Logistic_Regression', 'LDA', 'Random_Forest', 'SVM'], label='Select the model')
|
90 |
+
]
|
91 |
+
|
92 |
+
outputs = gr.outputs.Label(label='Predicted class probabilities')
|
93 |
+
|
94 |
+
gr.Interface(fn=make_prediction, inputs=inputs, outputs=outputs).launch()
|
gitattributes
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
29 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
30 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
31 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
32 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
heart.dat
ADDED
@@ -0,0 +1,270 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
70.0 1.0 4.0 130.0 322.0 0.0 2.0 109.0 0.0 2.4 2.0 3.0 3.0 2
|
2 |
+
67.0 0.0 3.0 115.0 564.0 0.0 2.0 160.0 0.0 1.6 2.0 0.0 7.0 1
|
3 |
+
57.0 1.0 2.0 124.0 261.0 0.0 0.0 141.0 0.0 0.3 1.0 0.0 7.0 2
|
4 |
+
64.0 1.0 4.0 128.0 263.0 0.0 0.0 105.0 1.0 0.2 2.0 1.0 7.0 1
|
5 |
+
74.0 0.0 2.0 120.0 269.0 0.0 2.0 121.0 1.0 0.2 1.0 1.0 3.0 1
|
6 |
+
65.0 1.0 4.0 120.0 177.0 0.0 0.0 140.0 0.0 0.4 1.0 0.0 7.0 1
|
7 |
+
56.0 1.0 3.0 130.0 256.0 1.0 2.0 142.0 1.0 0.6 2.0 1.0 6.0 2
|
8 |
+
59.0 1.0 4.0 110.0 239.0 0.0 2.0 142.0 1.0 1.2 2.0 1.0 7.0 2
|
9 |
+
60.0 1.0 4.0 140.0 293.0 0.0 2.0 170.0 0.0 1.2 2.0 2.0 7.0 2
|
10 |
+
63.0 0.0 4.0 150.0 407.0 0.0 2.0 154.0 0.0 4.0 2.0 3.0 7.0 2
|
11 |
+
59.0 1.0 4.0 135.0 234.0 0.0 0.0 161.0 0.0 0.5 2.0 0.0 7.0 1
|
12 |
+
53.0 1.0 4.0 142.0 226.0 0.0 2.0 111.0 1.0 0.0 1.0 0.0 7.0 1
|
13 |
+
44.0 1.0 3.0 140.0 235.0 0.0 2.0 180.0 0.0 0.0 1.0 0.0 3.0 1
|
14 |
+
61.0 1.0 1.0 134.0 234.0 0.0 0.0 145.0 0.0 2.6 2.0 2.0 3.0 2
|
15 |
+
57.0 0.0 4.0 128.0 303.0 0.0 2.0 159.0 0.0 0.0 1.0 1.0 3.0 1
|
16 |
+
71.0 0.0 4.0 112.0 149.0 0.0 0.0 125.0 0.0 1.6 2.0 0.0 3.0 1
|
17 |
+
46.0 1.0 4.0 140.0 311.0 0.0 0.0 120.0 1.0 1.8 2.0 2.0 7.0 2
|
18 |
+
53.0 1.0 4.0 140.0 203.0 1.0 2.0 155.0 1.0 3.1 3.0 0.0 7.0 2
|
19 |
+
64.0 1.0 1.0 110.0 211.0 0.0 2.0 144.0 1.0 1.8 2.0 0.0 3.0 1
|
20 |
+
40.0 1.0 1.0 140.0 199.0 0.0 0.0 178.0 1.0 1.4 1.0 0.0 7.0 1
|
21 |
+
67.0 1.0 4.0 120.0 229.0 0.0 2.0 129.0 1.0 2.6 2.0 2.0 7.0 2
|
22 |
+
48.0 1.0 2.0 130.0 245.0 0.0 2.0 180.0 0.0 0.2 2.0 0.0 3.0 1
|
23 |
+
43.0 1.0 4.0 115.0 303.0 0.0 0.0 181.0 0.0 1.2 2.0 0.0 3.0 1
|
24 |
+
47.0 1.0 4.0 112.0 204.0 0.0 0.0 143.0 0.0 0.1 1.0 0.0 3.0 1
|
25 |
+
54.0 0.0 2.0 132.0 288.0 1.0 2.0 159.0 1.0 0.0 1.0 1.0 3.0 1
|
26 |
+
48.0 0.0 3.0 130.0 275.0 0.0 0.0 139.0 0.0 0.2 1.0 0.0 3.0 1
|
27 |
+
46.0 0.0 4.0 138.0 243.0 0.0 2.0 152.0 1.0 0.0 2.0 0.0 3.0 1
|
28 |
+
51.0 0.0 3.0 120.0 295.0 0.0 2.0 157.0 0.0 0.6 1.0 0.0 3.0 1
|
29 |
+
58.0 1.0 3.0 112.0 230.0 0.0 2.0 165.0 0.0 2.5 2.0 1.0 7.0 2
|
30 |
+
71.0 0.0 3.0 110.0 265.0 1.0 2.0 130.0 0.0 0.0 1.0 1.0 3.0 1
|
31 |
+
57.0 1.0 3.0 128.0 229.0 0.0 2.0 150.0 0.0 0.4 2.0 1.0 7.0 2
|
32 |
+
66.0 1.0 4.0 160.0 228.0 0.0 2.0 138.0 0.0 2.3 1.0 0.0 6.0 1
|
33 |
+
37.0 0.0 3.0 120.0 215.0 0.0 0.0 170.0 0.0 0.0 1.0 0.0 3.0 1
|
34 |
+
59.0 1.0 4.0 170.0 326.0 0.0 2.0 140.0 1.0 3.4 3.0 0.0 7.0 2
|
35 |
+
50.0 1.0 4.0 144.0 200.0 0.0 2.0 126.0 1.0 0.9 2.0 0.0 7.0 2
|
36 |
+
48.0 1.0 4.0 130.0 256.0 1.0 2.0 150.0 1.0 0.0 1.0 2.0 7.0 2
|
37 |
+
61.0 1.0 4.0 140.0 207.0 0.0 2.0 138.0 1.0 1.9 1.0 1.0 7.0 2
|
38 |
+
59.0 1.0 1.0 160.0 273.0 0.0 2.0 125.0 0.0 0.0 1.0 0.0 3.0 2
|
39 |
+
42.0 1.0 3.0 130.0 180.0 0.0 0.0 150.0 0.0 0.0 1.0 0.0 3.0 1
|
40 |
+
48.0 1.0 4.0 122.0 222.0 0.0 2.0 186.0 0.0 0.0 1.0 0.0 3.0 1
|
41 |
+
40.0 1.0 4.0 152.0 223.0 0.0 0.0 181.0 0.0 0.0 1.0 0.0 7.0 2
|
42 |
+
62.0 0.0 4.0 124.0 209.0 0.0 0.0 163.0 0.0 0.0 1.0 0.0 3.0 1
|
43 |
+
44.0 1.0 3.0 130.0 233.0 0.0 0.0 179.0 1.0 0.4 1.0 0.0 3.0 1
|
44 |
+
46.0 1.0 2.0 101.0 197.0 1.0 0.0 156.0 0.0 0.0 1.0 0.0 7.0 1
|
45 |
+
59.0 1.0 3.0 126.0 218.0 1.0 0.0 134.0 0.0 2.2 2.0 1.0 6.0 2
|
46 |
+
58.0 1.0 3.0 140.0 211.0 1.0 2.0 165.0 0.0 0.0 1.0 0.0 3.0 1
|
47 |
+
49.0 1.0 3.0 118.0 149.0 0.0 2.0 126.0 0.0 0.8 1.0 3.0 3.0 2
|
48 |
+
44.0 1.0 4.0 110.0 197.0 0.0 2.0 177.0 0.0 0.0 1.0 1.0 3.0 2
|
49 |
+
66.0 1.0 2.0 160.0 246.0 0.0 0.0 120.0 1.0 0.0 2.0 3.0 6.0 2
|
50 |
+
65.0 0.0 4.0 150.0 225.0 0.0 2.0 114.0 0.0 1.0 2.0 3.0 7.0 2
|
51 |
+
42.0 1.0 4.0 136.0 315.0 0.0 0.0 125.0 1.0 1.8 2.0 0.0 6.0 2
|
52 |
+
52.0 1.0 2.0 128.0 205.0 1.0 0.0 184.0 0.0 0.0 1.0 0.0 3.0 1
|
53 |
+
65.0 0.0 3.0 140.0 417.0 1.0 2.0 157.0 0.0 0.8 1.0 1.0 3.0 1
|
54 |
+
63.0 0.0 2.0 140.0 195.0 0.0 0.0 179.0 0.0 0.0 1.0 2.0 3.0 1
|
55 |
+
45.0 0.0 2.0 130.0 234.0 0.0 2.0 175.0 0.0 0.6 2.0 0.0 3.0 1
|
56 |
+
41.0 0.0 2.0 105.0 198.0 0.0 0.0 168.0 0.0 0.0 1.0 1.0 3.0 1
|
57 |
+
61.0 1.0 4.0 138.0 166.0 0.0 2.0 125.0 1.0 3.6 2.0 1.0 3.0 2
|
58 |
+
60.0 0.0 3.0 120.0 178.0 1.0 0.0 96.0 0.0 0.0 1.0 0.0 3.0 1
|
59 |
+
59.0 0.0 4.0 174.0 249.0 0.0 0.0 143.0 1.0 0.0 2.0 0.0 3.0 2
|
60 |
+
62.0 1.0 2.0 120.0 281.0 0.0 2.0 103.0 0.0 1.4 2.0 1.0 7.0 2
|
61 |
+
57.0 1.0 3.0 150.0 126.0 1.0 0.0 173.0 0.0 0.2 1.0 1.0 7.0 1
|
62 |
+
51.0 0.0 4.0 130.0 305.0 0.0 0.0 142.0 1.0 1.2 2.0 0.0 7.0 2
|
63 |
+
44.0 1.0 3.0 120.0 226.0 0.0 0.0 169.0 0.0 0.0 1.0 0.0 3.0 1
|
64 |
+
60.0 0.0 1.0 150.0 240.0 0.0 0.0 171.0 0.0 0.9 1.0 0.0 3.0 1
|
65 |
+
63.0 1.0 1.0 145.0 233.0 1.0 2.0 150.0 0.0 2.3 3.0 0.0 6.0 1
|
66 |
+
57.0 1.0 4.0 150.0 276.0 0.0 2.0 112.0 1.0 0.6 2.0 1.0 6.0 2
|
67 |
+
51.0 1.0 4.0 140.0 261.0 0.0 2.0 186.0 1.0 0.0 1.0 0.0 3.0 1
|
68 |
+
58.0 0.0 2.0 136.0 319.0 1.0 2.0 152.0 0.0 0.0 1.0 2.0 3.0 2
|
69 |
+
44.0 0.0 3.0 118.0 242.0 0.0 0.0 149.0 0.0 0.3 2.0 1.0 3.0 1
|
70 |
+
47.0 1.0 3.0 108.0 243.0 0.0 0.0 152.0 0.0 0.0 1.0 0.0 3.0 2
|
71 |
+
61.0 1.0 4.0 120.0 260.0 0.0 0.0 140.0 1.0 3.6 2.0 1.0 7.0 2
|
72 |
+
57.0 0.0 4.0 120.0 354.0 0.0 0.0 163.0 1.0 0.6 1.0 0.0 3.0 1
|
73 |
+
70.0 1.0 2.0 156.0 245.0 0.0 2.0 143.0 0.0 0.0 1.0 0.0 3.0 1
|
74 |
+
76.0 0.0 3.0 140.0 197.0 0.0 1.0 116.0 0.0 1.1 2.0 0.0 3.0 1
|
75 |
+
67.0 0.0 4.0 106.0 223.0 0.0 0.0 142.0 0.0 0.3 1.0 2.0 3.0 1
|
76 |
+
45.0 1.0 4.0 142.0 309.0 0.0 2.0 147.0 1.0 0.0 2.0 3.0 7.0 2
|
77 |
+
45.0 1.0 4.0 104.0 208.0 0.0 2.0 148.0 1.0 3.0 2.0 0.0 3.0 1
|
78 |
+
39.0 0.0 3.0 94.0 199.0 0.0 0.0 179.0 0.0 0.0 1.0 0.0 3.0 1
|
79 |
+
42.0 0.0 3.0 120.0 209.0 0.0 0.0 173.0 0.0 0.0 2.0 0.0 3.0 1
|
80 |
+
56.0 1.0 2.0 120.0 236.0 0.0 0.0 178.0 0.0 0.8 1.0 0.0 3.0 1
|
81 |
+
58.0 1.0 4.0 146.0 218.0 0.0 0.0 105.0 0.0 2.0 2.0 1.0 7.0 2
|
82 |
+
35.0 1.0 4.0 120.0 198.0 0.0 0.0 130.0 1.0 1.6 2.0 0.0 7.0 2
|
83 |
+
58.0 1.0 4.0 150.0 270.0 0.0 2.0 111.0 1.0 0.8 1.0 0.0 7.0 2
|
84 |
+
41.0 1.0 3.0 130.0 214.0 0.0 2.0 168.0 0.0 2.0 2.0 0.0 3.0 1
|
85 |
+
57.0 1.0 4.0 110.0 201.0 0.0 0.0 126.0 1.0 1.5 2.0 0.0 6.0 1
|
86 |
+
42.0 1.0 1.0 148.0 244.0 0.0 2.0 178.0 0.0 0.8 1.0 2.0 3.0 1
|
87 |
+
62.0 1.0 2.0 128.0 208.0 1.0 2.0 140.0 0.0 0.0 1.0 0.0 3.0 1
|
88 |
+
59.0 1.0 1.0 178.0 270.0 0.0 2.0 145.0 0.0 4.2 3.0 0.0 7.0 1
|
89 |
+
41.0 0.0 2.0 126.0 306.0 0.0 0.0 163.0 0.0 0.0 1.0 0.0 3.0 1
|
90 |
+
50.0 1.0 4.0 150.0 243.0 0.0 2.0 128.0 0.0 2.6 2.0 0.0 7.0 2
|
91 |
+
59.0 1.0 2.0 140.0 221.0 0.0 0.0 164.0 1.0 0.0 1.0 0.0 3.0 1
|
92 |
+
61.0 0.0 4.0 130.0 330.0 0.0 2.0 169.0 0.0 0.0 1.0 0.0 3.0 2
|
93 |
+
54.0 1.0 4.0 124.0 266.0 0.0 2.0 109.0 1.0 2.2 2.0 1.0 7.0 2
|
94 |
+
54.0 1.0 4.0 110.0 206.0 0.0 2.0 108.0 1.0 0.0 2.0 1.0 3.0 2
|
95 |
+
52.0 1.0 4.0 125.0 212.0 0.0 0.0 168.0 0.0 1.0 1.0 2.0 7.0 2
|
96 |
+
47.0 1.0 4.0 110.0 275.0 0.0 2.0 118.0 1.0 1.0 2.0 1.0 3.0 2
|
97 |
+
66.0 1.0 4.0 120.0 302.0 0.0 2.0 151.0 0.0 0.4 2.0 0.0 3.0 1
|
98 |
+
58.0 1.0 4.0 100.0 234.0 0.0 0.0 156.0 0.0 0.1 1.0 1.0 7.0 2
|
99 |
+
64.0 0.0 3.0 140.0 313.0 0.0 0.0 133.0 0.0 0.2 1.0 0.0 7.0 1
|
100 |
+
50.0 0.0 2.0 120.0 244.0 0.0 0.0 162.0 0.0 1.1 1.0 0.0 3.0 1
|
101 |
+
44.0 0.0 3.0 108.0 141.0 0.0 0.0 175.0 0.0 0.6 2.0 0.0 3.0 1
|
102 |
+
67.0 1.0 4.0 120.0 237.0 0.0 0.0 71.0 0.0 1.0 2.0 0.0 3.0 2
|
103 |
+
49.0 0.0 4.0 130.0 269.0 0.0 0.0 163.0 0.0 0.0 1.0 0.0 3.0 1
|
104 |
+
57.0 1.0 4.0 165.0 289.0 1.0 2.0 124.0 0.0 1.0 2.0 3.0 7.0 2
|
105 |
+
63.0 1.0 4.0 130.0 254.0 0.0 2.0 147.0 0.0 1.4 2.0 1.0 7.0 2
|
106 |
+
48.0 1.0 4.0 124.0 274.0 0.0 2.0 166.0 0.0 0.5 2.0 0.0 7.0 2
|
107 |
+
51.0 1.0 3.0 100.0 222.0 0.0 0.0 143.0 1.0 1.2 2.0 0.0 3.0 1
|
108 |
+
60.0 0.0 4.0 150.0 258.0 0.0 2.0 157.0 0.0 2.6 2.0 2.0 7.0 2
|
109 |
+
59.0 1.0 4.0 140.0 177.0 0.0 0.0 162.0 1.0 0.0 1.0 1.0 7.0 2
|
110 |
+
45.0 0.0 2.0 112.0 160.0 0.0 0.0 138.0 0.0 0.0 2.0 0.0 3.0 1
|
111 |
+
55.0 0.0 4.0 180.0 327.0 0.0 1.0 117.0 1.0 3.4 2.0 0.0 3.0 2
|
112 |
+
41.0 1.0 2.0 110.0 235.0 0.0 0.0 153.0 0.0 0.0 1.0 0.0 3.0 1
|
113 |
+
60.0 0.0 4.0 158.0 305.0 0.0 2.0 161.0 0.0 0.0 1.0 0.0 3.0 2
|
114 |
+
54.0 0.0 3.0 135.0 304.0 1.0 0.0 170.0 0.0 0.0 1.0 0.0 3.0 1
|
115 |
+
42.0 1.0 2.0 120.0 295.0 0.0 0.0 162.0 0.0 0.0 1.0 0.0 3.0 1
|
116 |
+
49.0 0.0 2.0 134.0 271.0 0.0 0.0 162.0 0.0 0.0 2.0 0.0 3.0 1
|
117 |
+
46.0 1.0 4.0 120.0 249.0 0.0 2.0 144.0 0.0 0.8 1.0 0.0 7.0 2
|
118 |
+
56.0 0.0 4.0 200.0 288.0 1.0 2.0 133.0 1.0 4.0 3.0 2.0 7.0 2
|
119 |
+
66.0 0.0 1.0 150.0 226.0 0.0 0.0 114.0 0.0 2.6 3.0 0.0 3.0 1
|
120 |
+
56.0 1.0 4.0 130.0 283.0 1.0 2.0 103.0 1.0 1.6 3.0 0.0 7.0 2
|
121 |
+
49.0 1.0 3.0 120.0 188.0 0.0 0.0 139.0 0.0 2.0 2.0 3.0 7.0 2
|
122 |
+
54.0 1.0 4.0 122.0 286.0 0.0 2.0 116.0 1.0 3.2 2.0 2.0 3.0 2
|
123 |
+
57.0 1.0 4.0 152.0 274.0 0.0 0.0 88.0 1.0 1.2 2.0 1.0 7.0 2
|
124 |
+
65.0 0.0 3.0 160.0 360.0 0.0 2.0 151.0 0.0 0.8 1.0 0.0 3.0 1
|
125 |
+
54.0 1.0 3.0 125.0 273.0 0.0 2.0 152.0 0.0 0.5 3.0 1.0 3.0 1
|
126 |
+
54.0 0.0 3.0 160.0 201.0 0.0 0.0 163.0 0.0 0.0 1.0 1.0 3.0 1
|
127 |
+
62.0 1.0 4.0 120.0 267.0 0.0 0.0 99.0 1.0 1.8 2.0 2.0 7.0 2
|
128 |
+
52.0 0.0 3.0 136.0 196.0 0.0 2.0 169.0 0.0 0.1 2.0 0.0 3.0 1
|
129 |
+
52.0 1.0 2.0 134.0 201.0 0.0 0.0 158.0 0.0 0.8 1.0 1.0 3.0 1
|
130 |
+
60.0 1.0 4.0 117.0 230.0 1.0 0.0 160.0 1.0 1.4 1.0 2.0 7.0 2
|
131 |
+
63.0 0.0 4.0 108.0 269.0 0.0 0.0 169.0 1.0 1.8 2.0 2.0 3.0 2
|
132 |
+
66.0 1.0 4.0 112.0 212.0 0.0 2.0 132.0 1.0 0.1 1.0 1.0 3.0 2
|
133 |
+
42.0 1.0 4.0 140.0 226.0 0.0 0.0 178.0 0.0 0.0 1.0 0.0 3.0 1
|
134 |
+
64.0 1.0 4.0 120.0 246.0 0.0 2.0 96.0 1.0 2.2 3.0 1.0 3.0 2
|
135 |
+
54.0 1.0 3.0 150.0 232.0 0.0 2.0 165.0 0.0 1.6 1.0 0.0 7.0 1
|
136 |
+
46.0 0.0 3.0 142.0 177.0 0.0 2.0 160.0 1.0 1.4 3.0 0.0 3.0 1
|
137 |
+
67.0 0.0 3.0 152.0 277.0 0.0 0.0 172.0 0.0 0.0 1.0 1.0 3.0 1
|
138 |
+
56.0 1.0 4.0 125.0 249.0 1.0 2.0 144.0 1.0 1.2 2.0 1.0 3.0 2
|
139 |
+
34.0 0.0 2.0 118.0 210.0 0.0 0.0 192.0 0.0 0.7 1.0 0.0 3.0 1
|
140 |
+
57.0 1.0 4.0 132.0 207.0 0.0 0.0 168.0 1.0 0.0 1.0 0.0 7.0 1
|
141 |
+
64.0 1.0 4.0 145.0 212.0 0.0 2.0 132.0 0.0 2.0 2.0 2.0 6.0 2
|
142 |
+
59.0 1.0 4.0 138.0 271.0 0.0 2.0 182.0 0.0 0.0 1.0 0.0 3.0 1
|
143 |
+
50.0 1.0 3.0 140.0 233.0 0.0 0.0 163.0 0.0 0.6 2.0 1.0 7.0 2
|
144 |
+
51.0 1.0 1.0 125.0 213.0 0.0 2.0 125.0 1.0 1.4 1.0 1.0 3.0 1
|
145 |
+
54.0 1.0 2.0 192.0 283.0 0.0 2.0 195.0 0.0 0.0 1.0 1.0 7.0 2
|
146 |
+
53.0 1.0 4.0 123.0 282.0 0.0 0.0 95.0 1.0 2.0 2.0 2.0 7.0 2
|
147 |
+
52.0 1.0 4.0 112.0 230.0 0.0 0.0 160.0 0.0 0.0 1.0 1.0 3.0 2
|
148 |
+
40.0 1.0 4.0 110.0 167.0 0.0 2.0 114.0 1.0 2.0 2.0 0.0 7.0 2
|
149 |
+
58.0 1.0 3.0 132.0 224.0 0.0 2.0 173.0 0.0 3.2 1.0 2.0 7.0 2
|
150 |
+
41.0 0.0 3.0 112.0 268.0 0.0 2.0 172.0 1.0 0.0 1.0 0.0 3.0 1
|
151 |
+
41.0 1.0 3.0 112.0 250.0 0.0 0.0 179.0 0.0 0.0 1.0 0.0 3.0 1
|
152 |
+
50.0 0.0 3.0 120.0 219.0 0.0 0.0 158.0 0.0 1.6 2.0 0.0 3.0 1
|
153 |
+
54.0 0.0 3.0 108.0 267.0 0.0 2.0 167.0 0.0 0.0 1.0 0.0 3.0 1
|
154 |
+
64.0 0.0 4.0 130.0 303.0 0.0 0.0 122.0 0.0 2.0 2.0 2.0 3.0 1
|
155 |
+
51.0 0.0 3.0 130.0 256.0 0.0 2.0 149.0 0.0 0.5 1.0 0.0 3.0 1
|
156 |
+
46.0 0.0 2.0 105.0 204.0 0.0 0.0 172.0 0.0 0.0 1.0 0.0 3.0 1
|
157 |
+
55.0 1.0 4.0 140.0 217.0 0.0 0.0 111.0 1.0 5.6 3.0 0.0 7.0 2
|
158 |
+
45.0 1.0 2.0 128.0 308.0 0.0 2.0 170.0 0.0 0.0 1.0 0.0 3.0 1
|
159 |
+
56.0 1.0 1.0 120.0 193.0 0.0 2.0 162.0 0.0 1.9 2.0 0.0 7.0 1
|
160 |
+
66.0 0.0 4.0 178.0 228.0 1.0 0.0 165.0 1.0 1.0 2.0 2.0 7.0 2
|
161 |
+
38.0 1.0 1.0 120.0 231.0 0.0 0.0 182.0 1.0 3.8 2.0 0.0 7.0 2
|
162 |
+
62.0 0.0 4.0 150.0 244.0 0.0 0.0 154.0 1.0 1.4 2.0 0.0 3.0 2
|
163 |
+
55.0 1.0 2.0 130.0 262.0 0.0 0.0 155.0 0.0 0.0 1.0 0.0 3.0 1
|
164 |
+
58.0 1.0 4.0 128.0 259.0 0.0 2.0 130.0 1.0 3.0 2.0 2.0 7.0 2
|
165 |
+
43.0 1.0 4.0 110.0 211.0 0.0 0.0 161.0 0.0 0.0 1.0 0.0 7.0 1
|
166 |
+
64.0 0.0 4.0 180.0 325.0 0.0 0.0 154.0 1.0 0.0 1.0 0.0 3.0 1
|
167 |
+
50.0 0.0 4.0 110.0 254.0 0.0 2.0 159.0 0.0 0.0 1.0 0.0 3.0 1
|
168 |
+
53.0 1.0 3.0 130.0 197.0 1.0 2.0 152.0 0.0 1.2 3.0 0.0 3.0 1
|
169 |
+
45.0 0.0 4.0 138.0 236.0 0.0 2.0 152.0 1.0 0.2 2.0 0.0 3.0 1
|
170 |
+
65.0 1.0 1.0 138.0 282.0 1.0 2.0 174.0 0.0 1.4 2.0 1.0 3.0 2
|
171 |
+
69.0 1.0 1.0 160.0 234.0 1.0 2.0 131.0 0.0 0.1 2.0 1.0 3.0 1
|
172 |
+
69.0 1.0 3.0 140.0 254.0 0.0 2.0 146.0 0.0 2.0 2.0 3.0 7.0 2
|
173 |
+
67.0 1.0 4.0 100.0 299.0 0.0 2.0 125.0 1.0 0.9 2.0 2.0 3.0 2
|
174 |
+
68.0 0.0 3.0 120.0 211.0 0.0 2.0 115.0 0.0 1.5 2.0 0.0 3.0 1
|
175 |
+
34.0 1.0 1.0 118.0 182.0 0.0 2.0 174.0 0.0 0.0 1.0 0.0 3.0 1
|
176 |
+
62.0 0.0 4.0 138.0 294.0 1.0 0.0 106.0 0.0 1.9 2.0 3.0 3.0 2
|
177 |
+
51.0 1.0 4.0 140.0 298.0 0.0 0.0 122.0 1.0 4.2 2.0 3.0 7.0 2
|
178 |
+
46.0 1.0 3.0 150.0 231.0 0.0 0.0 147.0 0.0 3.6 2.0 0.0 3.0 2
|
179 |
+
67.0 1.0 4.0 125.0 254.0 1.0 0.0 163.0 0.0 0.2 2.0 2.0 7.0 2
|
180 |
+
50.0 1.0 3.0 129.0 196.0 0.0 0.0 163.0 0.0 0.0 1.0 0.0 3.0 1
|
181 |
+
42.0 1.0 3.0 120.0 240.0 1.0 0.0 194.0 0.0 0.8 3.0 0.0 7.0 1
|
182 |
+
56.0 0.0 4.0 134.0 409.0 0.0 2.0 150.0 1.0 1.9 2.0 2.0 7.0 2
|
183 |
+
41.0 1.0 4.0 110.0 172.0 0.0 2.0 158.0 0.0 0.0 1.0 0.0 7.0 2
|
184 |
+
42.0 0.0 4.0 102.0 265.0 0.0 2.0 122.0 0.0 0.6 2.0 0.0 3.0 1
|
185 |
+
53.0 1.0 3.0 130.0 246.0 1.0 2.0 173.0 0.0 0.0 1.0 3.0 3.0 1
|
186 |
+
43.0 1.0 3.0 130.0 315.0 0.0 0.0 162.0 0.0 1.9 1.0 1.0 3.0 1
|
187 |
+
56.0 1.0 4.0 132.0 184.0 0.0 2.0 105.0 1.0 2.1 2.0 1.0 6.0 2
|
188 |
+
52.0 1.0 4.0 108.0 233.0 1.0 0.0 147.0 0.0 0.1 1.0 3.0 7.0 1
|
189 |
+
62.0 0.0 4.0 140.0 394.0 0.0 2.0 157.0 0.0 1.2 2.0 0.0 3.0 1
|
190 |
+
70.0 1.0 3.0 160.0 269.0 0.0 0.0 112.0 1.0 2.9 2.0 1.0 7.0 2
|
191 |
+
54.0 1.0 4.0 140.0 239.0 0.0 0.0 160.0 0.0 1.2 1.0 0.0 3.0 1
|
192 |
+
70.0 1.0 4.0 145.0 174.0 0.0 0.0 125.0 1.0 2.6 3.0 0.0 7.0 2
|
193 |
+
54.0 1.0 2.0 108.0 309.0 0.0 0.0 156.0 0.0 0.0 1.0 0.0 7.0 1
|
194 |
+
35.0 1.0 4.0 126.0 282.0 0.0 2.0 156.0 1.0 0.0 1.0 0.0 7.0 2
|
195 |
+
48.0 1.0 3.0 124.0 255.0 1.0 0.0 175.0 0.0 0.0 1.0 2.0 3.0 1
|
196 |
+
55.0 0.0 2.0 135.0 250.0 0.0 2.0 161.0 0.0 1.4 2.0 0.0 3.0 1
|
197 |
+
58.0 0.0 4.0 100.0 248.0 0.0 2.0 122.0 0.0 1.0 2.0 0.0 3.0 1
|
198 |
+
54.0 0.0 3.0 110.0 214.0 0.0 0.0 158.0 0.0 1.6 2.0 0.0 3.0 1
|
199 |
+
69.0 0.0 1.0 140.0 239.0 0.0 0.0 151.0 0.0 1.8 1.0 2.0 3.0 1
|
200 |
+
77.0 1.0 4.0 125.0 304.0 0.0 2.0 162.0 1.0 0.0 1.0 3.0 3.0 2
|
201 |
+
68.0 1.0 3.0 118.0 277.0 0.0 0.0 151.0 0.0 1.0 1.0 1.0 7.0 1
|
202 |
+
58.0 1.0 4.0 125.0 300.0 0.0 2.0 171.0 0.0 0.0 1.0 2.0 7.0 2
|
203 |
+
60.0 1.0 4.0 125.0 258.0 0.0 2.0 141.0 1.0 2.8 2.0 1.0 7.0 2
|
204 |
+
51.0 1.0 4.0 140.0 299.0 0.0 0.0 173.0 1.0 1.6 1.0 0.0 7.0 2
|
205 |
+
55.0 1.0 4.0 160.0 289.0 0.0 2.0 145.0 1.0 0.8 2.0 1.0 7.0 2
|
206 |
+
52.0 1.0 1.0 152.0 298.0 1.0 0.0 178.0 0.0 1.2 2.0 0.0 7.0 1
|
207 |
+
60.0 0.0 3.0 102.0 318.0 0.0 0.0 160.0 0.0 0.0 1.0 1.0 3.0 1
|
208 |
+
58.0 1.0 3.0 105.0 240.0 0.0 2.0 154.0 1.0 0.6 2.0 0.0 7.0 1
|
209 |
+
64.0 1.0 3.0 125.0 309.0 0.0 0.0 131.0 1.0 1.8 2.0 0.0 7.0 2
|
210 |
+
37.0 1.0 3.0 130.0 250.0 0.0 0.0 187.0 0.0 3.5 3.0 0.0 3.0 1
|
211 |
+
59.0 1.0 1.0 170.0 288.0 0.0 2.0 159.0 0.0 0.2 2.0 0.0 7.0 2
|
212 |
+
51.0 1.0 3.0 125.0 245.0 1.0 2.0 166.0 0.0 2.4 2.0 0.0 3.0 1
|
213 |
+
43.0 0.0 3.0 122.0 213.0 0.0 0.0 165.0 0.0 0.2 2.0 0.0 3.0 1
|
214 |
+
58.0 1.0 4.0 128.0 216.0 0.0 2.0 131.0 1.0 2.2 2.0 3.0 7.0 2
|
215 |
+
29.0 1.0 2.0 130.0 204.0 0.0 2.0 202.0 0.0 0.0 1.0 0.0 3.0 1
|
216 |
+
41.0 0.0 2.0 130.0 204.0 0.0 2.0 172.0 0.0 1.4 1.0 0.0 3.0 1
|
217 |
+
63.0 0.0 3.0 135.0 252.0 0.0 2.0 172.0 0.0 0.0 1.0 0.0 3.0 1
|
218 |
+
51.0 1.0 3.0 94.0 227.0 0.0 0.0 154.0 1.0 0.0 1.0 1.0 7.0 1
|
219 |
+
54.0 1.0 3.0 120.0 258.0 0.0 2.0 147.0 0.0 0.4 2.0 0.0 7.0 1
|
220 |
+
44.0 1.0 2.0 120.0 220.0 0.0 0.0 170.0 0.0 0.0 1.0 0.0 3.0 1
|
221 |
+
54.0 1.0 4.0 110.0 239.0 0.0 0.0 126.0 1.0 2.8 2.0 1.0 7.0 2
|
222 |
+
65.0 1.0 4.0 135.0 254.0 0.0 2.0 127.0 0.0 2.8 2.0 1.0 7.0 2
|
223 |
+
57.0 1.0 3.0 150.0 168.0 0.0 0.0 174.0 0.0 1.6 1.0 0.0 3.0 1
|
224 |
+
63.0 1.0 4.0 130.0 330.0 1.0 2.0 132.0 1.0 1.8 1.0 3.0 7.0 2
|
225 |
+
35.0 0.0 4.0 138.0 183.0 0.0 0.0 182.0 0.0 1.4 1.0 0.0 3.0 1
|
226 |
+
41.0 1.0 2.0 135.0 203.0 0.0 0.0 132.0 0.0 0.0 2.0 0.0 6.0 1
|
227 |
+
62.0 0.0 3.0 130.0 263.0 0.0 0.0 97.0 0.0 1.2 2.0 1.0 7.0 2
|
228 |
+
43.0 0.0 4.0 132.0 341.0 1.0 2.0 136.0 1.0 3.0 2.0 0.0 7.0 2
|
229 |
+
58.0 0.0 1.0 150.0 283.0 1.0 2.0 162.0 0.0 1.0 1.0 0.0 3.0 1
|
230 |
+
52.0 1.0 1.0 118.0 186.0 0.0 2.0 190.0 0.0 0.0 2.0 0.0 6.0 1
|
231 |
+
61.0 0.0 4.0 145.0 307.0 0.0 2.0 146.0 1.0 1.0 2.0 0.0 7.0 2
|
232 |
+
39.0 1.0 4.0 118.0 219.0 0.0 0.0 140.0 0.0 1.2 2.0 0.0 7.0 2
|
233 |
+
45.0 1.0 4.0 115.0 260.0 0.0 2.0 185.0 0.0 0.0 1.0 0.0 3.0 1
|
234 |
+
52.0 1.0 4.0 128.0 255.0 0.0 0.0 161.0 1.0 0.0 1.0 1.0 7.0 2
|
235 |
+
62.0 1.0 3.0 130.0 231.0 0.0 0.0 146.0 0.0 1.8 2.0 3.0 7.0 1
|
236 |
+
62.0 0.0 4.0 160.0 164.0 0.0 2.0 145.0 0.0 6.2 3.0 3.0 7.0 2
|
237 |
+
53.0 0.0 4.0 138.0 234.0 0.0 2.0 160.0 0.0 0.0 1.0 0.0 3.0 1
|
238 |
+
43.0 1.0 4.0 120.0 177.0 0.0 2.0 120.0 1.0 2.5 2.0 0.0 7.0 2
|
239 |
+
47.0 1.0 3.0 138.0 257.0 0.0 2.0 156.0 0.0 0.0 1.0 0.0 3.0 1
|
240 |
+
52.0 1.0 2.0 120.0 325.0 0.0 0.0 172.0 0.0 0.2 1.0 0.0 3.0 1
|
241 |
+
68.0 1.0 3.0 180.0 274.0 1.0 2.0 150.0 1.0 1.6 2.0 0.0 7.0 2
|
242 |
+
39.0 1.0 3.0 140.0 321.0 0.0 2.0 182.0 0.0 0.0 1.0 0.0 3.0 1
|
243 |
+
53.0 0.0 4.0 130.0 264.0 0.0 2.0 143.0 0.0 0.4 2.0 0.0 3.0 1
|
244 |
+
62.0 0.0 4.0 140.0 268.0 0.0 2.0 160.0 0.0 3.6 3.0 2.0 3.0 2
|
245 |
+
51.0 0.0 3.0 140.0 308.0 0.0 2.0 142.0 0.0 1.5 1.0 1.0 3.0 1
|
246 |
+
60.0 1.0 4.0 130.0 253.0 0.0 0.0 144.0 1.0 1.4 1.0 1.0 7.0 2
|
247 |
+
65.0 1.0 4.0 110.0 248.0 0.0 2.0 158.0 0.0 0.6 1.0 2.0 6.0 2
|
248 |
+
65.0 0.0 3.0 155.0 269.0 0.0 0.0 148.0 0.0 0.8 1.0 0.0 3.0 1
|
249 |
+
60.0 1.0 3.0 140.0 185.0 0.0 2.0 155.0 0.0 3.0 2.0 0.0 3.0 2
|
250 |
+
60.0 1.0 4.0 145.0 282.0 0.0 2.0 142.0 1.0 2.8 2.0 2.0 7.0 2
|
251 |
+
54.0 1.0 4.0 120.0 188.0 0.0 0.0 113.0 0.0 1.4 2.0 1.0 7.0 2
|
252 |
+
44.0 1.0 2.0 130.0 219.0 0.0 2.0 188.0 0.0 0.0 1.0 0.0 3.0 1
|
253 |
+
44.0 1.0 4.0 112.0 290.0 0.0 2.0 153.0 0.0 0.0 1.0 1.0 3.0 2
|
254 |
+
51.0 1.0 3.0 110.0 175.0 0.0 0.0 123.0 0.0 0.6 1.0 0.0 3.0 1
|
255 |
+
59.0 1.0 3.0 150.0 212.0 1.0 0.0 157.0 0.0 1.6 1.0 0.0 3.0 1
|
256 |
+
71.0 0.0 2.0 160.0 302.0 0.0 0.0 162.0 0.0 0.4 1.0 2.0 3.0 1
|
257 |
+
61.0 1.0 3.0 150.0 243.0 1.0 0.0 137.0 1.0 1.0 2.0 0.0 3.0 1
|
258 |
+
55.0 1.0 4.0 132.0 353.0 0.0 0.0 132.0 1.0 1.2 2.0 1.0 7.0 2
|
259 |
+
64.0 1.0 3.0 140.0 335.0 0.0 0.0 158.0 0.0 0.0 1.0 0.0 3.0 2
|
260 |
+
43.0 1.0 4.0 150.0 247.0 0.0 0.0 171.0 0.0 1.5 1.0 0.0 3.0 1
|
261 |
+
58.0 0.0 3.0 120.0 340.0 0.0 0.0 172.0 0.0 0.0 1.0 0.0 3.0 1
|
262 |
+
60.0 1.0 4.0 130.0 206.0 0.0 2.0 132.0 1.0 2.4 2.0 2.0 7.0 2
|
263 |
+
58.0 1.0 2.0 120.0 284.0 0.0 2.0 160.0 0.0 1.8 2.0 0.0 3.0 2
|
264 |
+
49.0 1.0 2.0 130.0 266.0 0.0 0.0 171.0 0.0 0.6 1.0 0.0 3.0 1
|
265 |
+
48.0 1.0 2.0 110.0 229.0 0.0 0.0 168.0 0.0 1.0 3.0 0.0 7.0 2
|
266 |
+
52.0 1.0 3.0 172.0 199.0 1.0 0.0 162.0 0.0 0.5 1.0 0.0 7.0 1
|
267 |
+
44.0 1.0 2.0 120.0 263.0 0.0 0.0 173.0 0.0 0.0 1.0 0.0 7.0 1
|
268 |
+
56.0 0.0 2.0 140.0 294.0 0.0 2.0 153.0 0.0 1.3 2.0 0.0 3.0 1
|
269 |
+
57.0 1.0 4.0 140.0 192.0 0.0 0.0 148.0 0.0 0.4 2.0 0.0 6.0 1
|
270 |
+
67.0 1.0 4.0 160.0 286.0 0.0 2.0 108.0 1.0 1.5 2.0 3.0 3.0 2
|
requirements.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
scikit-learn
|
svm.pkl
ADDED
Binary file (16.6 kB). View file
|
|