kkhushisaid commited on
Commit
4c63c59
1 Parent(s): ac2a8e3

Upload 9 files

Browse files
Files changed (9) hide show
  1. LDA.pkl +0 -0
  2. QDA.pkl +0 -0
  3. README.md +12 -0
  4. Tree.pkl +0 -0
  5. app.py +94 -0
  6. gitattributes +34 -0
  7. heart.dat +270 -0
  8. requirements.txt +1 -0
  9. svm.pkl +0 -0
LDA.pkl ADDED
Binary file (1.33 kB). View file
 
QDA.pkl ADDED
Binary file (6.56 kB). View file
 
README.md ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ title: Heart Disease
3
+ emoji: 🦀
4
+ colorFrom: pink
5
+ colorTo: purple
6
+ sdk: gradio
7
+ sdk_version: 3.23.0
8
+ app_file: app.py
9
+ pinned: false
10
+ ---
11
+
12
+ Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
Tree.pkl ADDED
Binary file (4.88 kB). View file
 
app.py ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import pickle
3
+ import pandas as pd
4
+
5
+ # load the data
6
+ heart=pd.read_csv('heart.dat', header=None, sep=' ', names=['age', 'sex', 'cp', 'trestbps', 'chol',
7
+ 'fbs', 'restecg', 'thalach', 'exang',
8
+ 'oldpeak', 'slope', 'ca', 'thal', 'heart disease'])
9
+
10
+ # load the saved models
11
+ with open('Tree.pkl', 'rb') as f:
12
+ tree_model = pickle.load(f)
13
+
14
+ with open('svm.pkl', 'rb') as f:
15
+ svm_model = pickle.load(f)
16
+
17
+ with open('QDA.pkl', 'rb') as f:
18
+ qda_model = pickle.load(f)
19
+
20
+ with open('MLP.pkl', 'rb') as f:
21
+ mlp_model = pickle.load(f)
22
+
23
+ with open('Log.pkl', 'rb') as f:
24
+ log_model = pickle.load(f)
25
+
26
+ with open('LDA.pkl', 'rb') as f:
27
+ lda_model = pickle.load(f)
28
+
29
+ with open('For.pkl', 'rb') as f:
30
+ for_model = pickle.load(f)
31
+
32
+ # Define the function to make predictions
33
+ def make_prediction(age, sex, cp, trestbps, chol, fbs, restecg, thalach, exang, oldpeak, slope, ca, thal, model_name):
34
+ # Create a pandas DataFrame from the inputs
35
+ input_data = pd.DataFrame({
36
+ 'age': [age],
37
+ 'sex': [sex],
38
+ 'cp': [cp],
39
+ 'trestbps': [trestbps],
40
+ 'chol': [chol],
41
+ 'fbs': [fbs],
42
+ 'restecg': [restecg],
43
+ 'thalach': [thalach],
44
+ 'exang': [exang],
45
+ 'oldpeak': [oldpeak],
46
+ 'slope': [slope],
47
+ 'ca': [ca],
48
+ 'thal': [thal]
49
+ })
50
+
51
+ # feature scaling
52
+ from sklearn.model_selection import train_test_split
53
+ X = heart.drop('heart disease', axis=1)
54
+ y = heart['heart disease']
55
+ X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, random_state=42, stratify=y)
56
+ from sklearn.preprocessing import StandardScaler
57
+ scaler = StandardScaler()
58
+ X_train_std = scaler.fit_transform(X_train)
59
+
60
+ # choose the model and make prediction
61
+ model_dict = {'Decision_Tree': tree_model,
62
+ 'QDA': qda_model,
63
+ 'Artificial_Neural_Networks': mlp_model,
64
+ 'Logistic_Regression': log_model,
65
+ 'LDA': lda_model,
66
+ 'Random_Forest': for_model,
67
+ 'SVM': svm_model}
68
+ model = model_dict[model_name]
69
+ input_data_std = scaler.transform(input_data)
70
+ probas = model.predict_proba(input_data_std)
71
+ outtext={1:'no heart_disease', 2:'heart disease'}
72
+ return {f"Probability of Class {i+1}": proba for i, proba in enumerate(probas[0])}
73
+
74
+ # Create the Gradio interface
75
+ inputs = [
76
+ gr.inputs.Number(label='age'),
77
+ gr.inputs.Radio(choices=[0,1], label='sex'),
78
+ gr.inputs.Dropdown(choices=[1,2,3,4], label='chest pain type'),
79
+ gr.inputs.Number(label='resting blood pressure'),
80
+ gr.inputs.Number(label='serum cholestoral'),
81
+ gr.inputs.Radio(choices=[0,1], label='fasting blood sugar'),
82
+ gr.inputs.Radio(choices=[0,1,2], label='resting electrocardiographic'),
83
+ gr.inputs.Number(label='maximum heart rate'),
84
+ gr.inputs.Radio(choices=[0,1], label='exercise induced angina'),
85
+ gr.inputs.Number(label='oldpeak'),
86
+ gr.inputs.Dropdown(choices=[1,2,3], label='slope ST'),
87
+ gr.inputs.Dropdown(choices=[0,1,2,3], label='major vessels'),
88
+ gr.inputs.Dropdown(choices=[3,6,7], label='thal'),
89
+ gr.inputs.Dropdown(choices=['Decision_Tree', 'QDA', 'Artificial_Neural_Networks', 'Logistic_Regression', 'LDA', 'Random_Forest', 'SVM'], label='Select the model')
90
+ ]
91
+
92
+ outputs = gr.outputs.Label(label='Predicted class probabilities')
93
+
94
+ gr.Interface(fn=make_prediction, inputs=inputs, outputs=outputs).launch()
gitattributes ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
5
+ *.ckpt filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.mlmodel filter=lfs diff=lfs merge=lfs -text
12
+ *.model filter=lfs diff=lfs merge=lfs -text
13
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
14
+ *.npy filter=lfs diff=lfs merge=lfs -text
15
+ *.npz filter=lfs diff=lfs merge=lfs -text
16
+ *.onnx filter=lfs diff=lfs merge=lfs -text
17
+ *.ot filter=lfs diff=lfs merge=lfs -text
18
+ *.parquet filter=lfs diff=lfs merge=lfs -text
19
+ *.pb filter=lfs diff=lfs merge=lfs -text
20
+ *.pickle filter=lfs diff=lfs merge=lfs -text
21
+ *.pkl filter=lfs diff=lfs merge=lfs -text
22
+ *.pt filter=lfs diff=lfs merge=lfs -text
23
+ *.pth filter=lfs diff=lfs merge=lfs -text
24
+ *.rar filter=lfs diff=lfs merge=lfs -text
25
+ *.safetensors filter=lfs diff=lfs merge=lfs -text
26
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
28
+ *.tflite filter=lfs diff=lfs merge=lfs -text
29
+ *.tgz filter=lfs diff=lfs merge=lfs -text
30
+ *.wasm filter=lfs diff=lfs merge=lfs -text
31
+ *.xz filter=lfs diff=lfs merge=lfs -text
32
+ *.zip filter=lfs diff=lfs merge=lfs -text
33
+ *.zst filter=lfs diff=lfs merge=lfs -text
34
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
heart.dat ADDED
@@ -0,0 +1,270 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 70.0 1.0 4.0 130.0 322.0 0.0 2.0 109.0 0.0 2.4 2.0 3.0 3.0 2
2
+ 67.0 0.0 3.0 115.0 564.0 0.0 2.0 160.0 0.0 1.6 2.0 0.0 7.0 1
3
+ 57.0 1.0 2.0 124.0 261.0 0.0 0.0 141.0 0.0 0.3 1.0 0.0 7.0 2
4
+ 64.0 1.0 4.0 128.0 263.0 0.0 0.0 105.0 1.0 0.2 2.0 1.0 7.0 1
5
+ 74.0 0.0 2.0 120.0 269.0 0.0 2.0 121.0 1.0 0.2 1.0 1.0 3.0 1
6
+ 65.0 1.0 4.0 120.0 177.0 0.0 0.0 140.0 0.0 0.4 1.0 0.0 7.0 1
7
+ 56.0 1.0 3.0 130.0 256.0 1.0 2.0 142.0 1.0 0.6 2.0 1.0 6.0 2
8
+ 59.0 1.0 4.0 110.0 239.0 0.0 2.0 142.0 1.0 1.2 2.0 1.0 7.0 2
9
+ 60.0 1.0 4.0 140.0 293.0 0.0 2.0 170.0 0.0 1.2 2.0 2.0 7.0 2
10
+ 63.0 0.0 4.0 150.0 407.0 0.0 2.0 154.0 0.0 4.0 2.0 3.0 7.0 2
11
+ 59.0 1.0 4.0 135.0 234.0 0.0 0.0 161.0 0.0 0.5 2.0 0.0 7.0 1
12
+ 53.0 1.0 4.0 142.0 226.0 0.0 2.0 111.0 1.0 0.0 1.0 0.0 7.0 1
13
+ 44.0 1.0 3.0 140.0 235.0 0.0 2.0 180.0 0.0 0.0 1.0 0.0 3.0 1
14
+ 61.0 1.0 1.0 134.0 234.0 0.0 0.0 145.0 0.0 2.6 2.0 2.0 3.0 2
15
+ 57.0 0.0 4.0 128.0 303.0 0.0 2.0 159.0 0.0 0.0 1.0 1.0 3.0 1
16
+ 71.0 0.0 4.0 112.0 149.0 0.0 0.0 125.0 0.0 1.6 2.0 0.0 3.0 1
17
+ 46.0 1.0 4.0 140.0 311.0 0.0 0.0 120.0 1.0 1.8 2.0 2.0 7.0 2
18
+ 53.0 1.0 4.0 140.0 203.0 1.0 2.0 155.0 1.0 3.1 3.0 0.0 7.0 2
19
+ 64.0 1.0 1.0 110.0 211.0 0.0 2.0 144.0 1.0 1.8 2.0 0.0 3.0 1
20
+ 40.0 1.0 1.0 140.0 199.0 0.0 0.0 178.0 1.0 1.4 1.0 0.0 7.0 1
21
+ 67.0 1.0 4.0 120.0 229.0 0.0 2.0 129.0 1.0 2.6 2.0 2.0 7.0 2
22
+ 48.0 1.0 2.0 130.0 245.0 0.0 2.0 180.0 0.0 0.2 2.0 0.0 3.0 1
23
+ 43.0 1.0 4.0 115.0 303.0 0.0 0.0 181.0 0.0 1.2 2.0 0.0 3.0 1
24
+ 47.0 1.0 4.0 112.0 204.0 0.0 0.0 143.0 0.0 0.1 1.0 0.0 3.0 1
25
+ 54.0 0.0 2.0 132.0 288.0 1.0 2.0 159.0 1.0 0.0 1.0 1.0 3.0 1
26
+ 48.0 0.0 3.0 130.0 275.0 0.0 0.0 139.0 0.0 0.2 1.0 0.0 3.0 1
27
+ 46.0 0.0 4.0 138.0 243.0 0.0 2.0 152.0 1.0 0.0 2.0 0.0 3.0 1
28
+ 51.0 0.0 3.0 120.0 295.0 0.0 2.0 157.0 0.0 0.6 1.0 0.0 3.0 1
29
+ 58.0 1.0 3.0 112.0 230.0 0.0 2.0 165.0 0.0 2.5 2.0 1.0 7.0 2
30
+ 71.0 0.0 3.0 110.0 265.0 1.0 2.0 130.0 0.0 0.0 1.0 1.0 3.0 1
31
+ 57.0 1.0 3.0 128.0 229.0 0.0 2.0 150.0 0.0 0.4 2.0 1.0 7.0 2
32
+ 66.0 1.0 4.0 160.0 228.0 0.0 2.0 138.0 0.0 2.3 1.0 0.0 6.0 1
33
+ 37.0 0.0 3.0 120.0 215.0 0.0 0.0 170.0 0.0 0.0 1.0 0.0 3.0 1
34
+ 59.0 1.0 4.0 170.0 326.0 0.0 2.0 140.0 1.0 3.4 3.0 0.0 7.0 2
35
+ 50.0 1.0 4.0 144.0 200.0 0.0 2.0 126.0 1.0 0.9 2.0 0.0 7.0 2
36
+ 48.0 1.0 4.0 130.0 256.0 1.0 2.0 150.0 1.0 0.0 1.0 2.0 7.0 2
37
+ 61.0 1.0 4.0 140.0 207.0 0.0 2.0 138.0 1.0 1.9 1.0 1.0 7.0 2
38
+ 59.0 1.0 1.0 160.0 273.0 0.0 2.0 125.0 0.0 0.0 1.0 0.0 3.0 2
39
+ 42.0 1.0 3.0 130.0 180.0 0.0 0.0 150.0 0.0 0.0 1.0 0.0 3.0 1
40
+ 48.0 1.0 4.0 122.0 222.0 0.0 2.0 186.0 0.0 0.0 1.0 0.0 3.0 1
41
+ 40.0 1.0 4.0 152.0 223.0 0.0 0.0 181.0 0.0 0.0 1.0 0.0 7.0 2
42
+ 62.0 0.0 4.0 124.0 209.0 0.0 0.0 163.0 0.0 0.0 1.0 0.0 3.0 1
43
+ 44.0 1.0 3.0 130.0 233.0 0.0 0.0 179.0 1.0 0.4 1.0 0.0 3.0 1
44
+ 46.0 1.0 2.0 101.0 197.0 1.0 0.0 156.0 0.0 0.0 1.0 0.0 7.0 1
45
+ 59.0 1.0 3.0 126.0 218.0 1.0 0.0 134.0 0.0 2.2 2.0 1.0 6.0 2
46
+ 58.0 1.0 3.0 140.0 211.0 1.0 2.0 165.0 0.0 0.0 1.0 0.0 3.0 1
47
+ 49.0 1.0 3.0 118.0 149.0 0.0 2.0 126.0 0.0 0.8 1.0 3.0 3.0 2
48
+ 44.0 1.0 4.0 110.0 197.0 0.0 2.0 177.0 0.0 0.0 1.0 1.0 3.0 2
49
+ 66.0 1.0 2.0 160.0 246.0 0.0 0.0 120.0 1.0 0.0 2.0 3.0 6.0 2
50
+ 65.0 0.0 4.0 150.0 225.0 0.0 2.0 114.0 0.0 1.0 2.0 3.0 7.0 2
51
+ 42.0 1.0 4.0 136.0 315.0 0.0 0.0 125.0 1.0 1.8 2.0 0.0 6.0 2
52
+ 52.0 1.0 2.0 128.0 205.0 1.0 0.0 184.0 0.0 0.0 1.0 0.0 3.0 1
53
+ 65.0 0.0 3.0 140.0 417.0 1.0 2.0 157.0 0.0 0.8 1.0 1.0 3.0 1
54
+ 63.0 0.0 2.0 140.0 195.0 0.0 0.0 179.0 0.0 0.0 1.0 2.0 3.0 1
55
+ 45.0 0.0 2.0 130.0 234.0 0.0 2.0 175.0 0.0 0.6 2.0 0.0 3.0 1
56
+ 41.0 0.0 2.0 105.0 198.0 0.0 0.0 168.0 0.0 0.0 1.0 1.0 3.0 1
57
+ 61.0 1.0 4.0 138.0 166.0 0.0 2.0 125.0 1.0 3.6 2.0 1.0 3.0 2
58
+ 60.0 0.0 3.0 120.0 178.0 1.0 0.0 96.0 0.0 0.0 1.0 0.0 3.0 1
59
+ 59.0 0.0 4.0 174.0 249.0 0.0 0.0 143.0 1.0 0.0 2.0 0.0 3.0 2
60
+ 62.0 1.0 2.0 120.0 281.0 0.0 2.0 103.0 0.0 1.4 2.0 1.0 7.0 2
61
+ 57.0 1.0 3.0 150.0 126.0 1.0 0.0 173.0 0.0 0.2 1.0 1.0 7.0 1
62
+ 51.0 0.0 4.0 130.0 305.0 0.0 0.0 142.0 1.0 1.2 2.0 0.0 7.0 2
63
+ 44.0 1.0 3.0 120.0 226.0 0.0 0.0 169.0 0.0 0.0 1.0 0.0 3.0 1
64
+ 60.0 0.0 1.0 150.0 240.0 0.0 0.0 171.0 0.0 0.9 1.0 0.0 3.0 1
65
+ 63.0 1.0 1.0 145.0 233.0 1.0 2.0 150.0 0.0 2.3 3.0 0.0 6.0 1
66
+ 57.0 1.0 4.0 150.0 276.0 0.0 2.0 112.0 1.0 0.6 2.0 1.0 6.0 2
67
+ 51.0 1.0 4.0 140.0 261.0 0.0 2.0 186.0 1.0 0.0 1.0 0.0 3.0 1
68
+ 58.0 0.0 2.0 136.0 319.0 1.0 2.0 152.0 0.0 0.0 1.0 2.0 3.0 2
69
+ 44.0 0.0 3.0 118.0 242.0 0.0 0.0 149.0 0.0 0.3 2.0 1.0 3.0 1
70
+ 47.0 1.0 3.0 108.0 243.0 0.0 0.0 152.0 0.0 0.0 1.0 0.0 3.0 2
71
+ 61.0 1.0 4.0 120.0 260.0 0.0 0.0 140.0 1.0 3.6 2.0 1.0 7.0 2
72
+ 57.0 0.0 4.0 120.0 354.0 0.0 0.0 163.0 1.0 0.6 1.0 0.0 3.0 1
73
+ 70.0 1.0 2.0 156.0 245.0 0.0 2.0 143.0 0.0 0.0 1.0 0.0 3.0 1
74
+ 76.0 0.0 3.0 140.0 197.0 0.0 1.0 116.0 0.0 1.1 2.0 0.0 3.0 1
75
+ 67.0 0.0 4.0 106.0 223.0 0.0 0.0 142.0 0.0 0.3 1.0 2.0 3.0 1
76
+ 45.0 1.0 4.0 142.0 309.0 0.0 2.0 147.0 1.0 0.0 2.0 3.0 7.0 2
77
+ 45.0 1.0 4.0 104.0 208.0 0.0 2.0 148.0 1.0 3.0 2.0 0.0 3.0 1
78
+ 39.0 0.0 3.0 94.0 199.0 0.0 0.0 179.0 0.0 0.0 1.0 0.0 3.0 1
79
+ 42.0 0.0 3.0 120.0 209.0 0.0 0.0 173.0 0.0 0.0 2.0 0.0 3.0 1
80
+ 56.0 1.0 2.0 120.0 236.0 0.0 0.0 178.0 0.0 0.8 1.0 0.0 3.0 1
81
+ 58.0 1.0 4.0 146.0 218.0 0.0 0.0 105.0 0.0 2.0 2.0 1.0 7.0 2
82
+ 35.0 1.0 4.0 120.0 198.0 0.0 0.0 130.0 1.0 1.6 2.0 0.0 7.0 2
83
+ 58.0 1.0 4.0 150.0 270.0 0.0 2.0 111.0 1.0 0.8 1.0 0.0 7.0 2
84
+ 41.0 1.0 3.0 130.0 214.0 0.0 2.0 168.0 0.0 2.0 2.0 0.0 3.0 1
85
+ 57.0 1.0 4.0 110.0 201.0 0.0 0.0 126.0 1.0 1.5 2.0 0.0 6.0 1
86
+ 42.0 1.0 1.0 148.0 244.0 0.0 2.0 178.0 0.0 0.8 1.0 2.0 3.0 1
87
+ 62.0 1.0 2.0 128.0 208.0 1.0 2.0 140.0 0.0 0.0 1.0 0.0 3.0 1
88
+ 59.0 1.0 1.0 178.0 270.0 0.0 2.0 145.0 0.0 4.2 3.0 0.0 7.0 1
89
+ 41.0 0.0 2.0 126.0 306.0 0.0 0.0 163.0 0.0 0.0 1.0 0.0 3.0 1
90
+ 50.0 1.0 4.0 150.0 243.0 0.0 2.0 128.0 0.0 2.6 2.0 0.0 7.0 2
91
+ 59.0 1.0 2.0 140.0 221.0 0.0 0.0 164.0 1.0 0.0 1.0 0.0 3.0 1
92
+ 61.0 0.0 4.0 130.0 330.0 0.0 2.0 169.0 0.0 0.0 1.0 0.0 3.0 2
93
+ 54.0 1.0 4.0 124.0 266.0 0.0 2.0 109.0 1.0 2.2 2.0 1.0 7.0 2
94
+ 54.0 1.0 4.0 110.0 206.0 0.0 2.0 108.0 1.0 0.0 2.0 1.0 3.0 2
95
+ 52.0 1.0 4.0 125.0 212.0 0.0 0.0 168.0 0.0 1.0 1.0 2.0 7.0 2
96
+ 47.0 1.0 4.0 110.0 275.0 0.0 2.0 118.0 1.0 1.0 2.0 1.0 3.0 2
97
+ 66.0 1.0 4.0 120.0 302.0 0.0 2.0 151.0 0.0 0.4 2.0 0.0 3.0 1
98
+ 58.0 1.0 4.0 100.0 234.0 0.0 0.0 156.0 0.0 0.1 1.0 1.0 7.0 2
99
+ 64.0 0.0 3.0 140.0 313.0 0.0 0.0 133.0 0.0 0.2 1.0 0.0 7.0 1
100
+ 50.0 0.0 2.0 120.0 244.0 0.0 0.0 162.0 0.0 1.1 1.0 0.0 3.0 1
101
+ 44.0 0.0 3.0 108.0 141.0 0.0 0.0 175.0 0.0 0.6 2.0 0.0 3.0 1
102
+ 67.0 1.0 4.0 120.0 237.0 0.0 0.0 71.0 0.0 1.0 2.0 0.0 3.0 2
103
+ 49.0 0.0 4.0 130.0 269.0 0.0 0.0 163.0 0.0 0.0 1.0 0.0 3.0 1
104
+ 57.0 1.0 4.0 165.0 289.0 1.0 2.0 124.0 0.0 1.0 2.0 3.0 7.0 2
105
+ 63.0 1.0 4.0 130.0 254.0 0.0 2.0 147.0 0.0 1.4 2.0 1.0 7.0 2
106
+ 48.0 1.0 4.0 124.0 274.0 0.0 2.0 166.0 0.0 0.5 2.0 0.0 7.0 2
107
+ 51.0 1.0 3.0 100.0 222.0 0.0 0.0 143.0 1.0 1.2 2.0 0.0 3.0 1
108
+ 60.0 0.0 4.0 150.0 258.0 0.0 2.0 157.0 0.0 2.6 2.0 2.0 7.0 2
109
+ 59.0 1.0 4.0 140.0 177.0 0.0 0.0 162.0 1.0 0.0 1.0 1.0 7.0 2
110
+ 45.0 0.0 2.0 112.0 160.0 0.0 0.0 138.0 0.0 0.0 2.0 0.0 3.0 1
111
+ 55.0 0.0 4.0 180.0 327.0 0.0 1.0 117.0 1.0 3.4 2.0 0.0 3.0 2
112
+ 41.0 1.0 2.0 110.0 235.0 0.0 0.0 153.0 0.0 0.0 1.0 0.0 3.0 1
113
+ 60.0 0.0 4.0 158.0 305.0 0.0 2.0 161.0 0.0 0.0 1.0 0.0 3.0 2
114
+ 54.0 0.0 3.0 135.0 304.0 1.0 0.0 170.0 0.0 0.0 1.0 0.0 3.0 1
115
+ 42.0 1.0 2.0 120.0 295.0 0.0 0.0 162.0 0.0 0.0 1.0 0.0 3.0 1
116
+ 49.0 0.0 2.0 134.0 271.0 0.0 0.0 162.0 0.0 0.0 2.0 0.0 3.0 1
117
+ 46.0 1.0 4.0 120.0 249.0 0.0 2.0 144.0 0.0 0.8 1.0 0.0 7.0 2
118
+ 56.0 0.0 4.0 200.0 288.0 1.0 2.0 133.0 1.0 4.0 3.0 2.0 7.0 2
119
+ 66.0 0.0 1.0 150.0 226.0 0.0 0.0 114.0 0.0 2.6 3.0 0.0 3.0 1
120
+ 56.0 1.0 4.0 130.0 283.0 1.0 2.0 103.0 1.0 1.6 3.0 0.0 7.0 2
121
+ 49.0 1.0 3.0 120.0 188.0 0.0 0.0 139.0 0.0 2.0 2.0 3.0 7.0 2
122
+ 54.0 1.0 4.0 122.0 286.0 0.0 2.0 116.0 1.0 3.2 2.0 2.0 3.0 2
123
+ 57.0 1.0 4.0 152.0 274.0 0.0 0.0 88.0 1.0 1.2 2.0 1.0 7.0 2
124
+ 65.0 0.0 3.0 160.0 360.0 0.0 2.0 151.0 0.0 0.8 1.0 0.0 3.0 1
125
+ 54.0 1.0 3.0 125.0 273.0 0.0 2.0 152.0 0.0 0.5 3.0 1.0 3.0 1
126
+ 54.0 0.0 3.0 160.0 201.0 0.0 0.0 163.0 0.0 0.0 1.0 1.0 3.0 1
127
+ 62.0 1.0 4.0 120.0 267.0 0.0 0.0 99.0 1.0 1.8 2.0 2.0 7.0 2
128
+ 52.0 0.0 3.0 136.0 196.0 0.0 2.0 169.0 0.0 0.1 2.0 0.0 3.0 1
129
+ 52.0 1.0 2.0 134.0 201.0 0.0 0.0 158.0 0.0 0.8 1.0 1.0 3.0 1
130
+ 60.0 1.0 4.0 117.0 230.0 1.0 0.0 160.0 1.0 1.4 1.0 2.0 7.0 2
131
+ 63.0 0.0 4.0 108.0 269.0 0.0 0.0 169.0 1.0 1.8 2.0 2.0 3.0 2
132
+ 66.0 1.0 4.0 112.0 212.0 0.0 2.0 132.0 1.0 0.1 1.0 1.0 3.0 2
133
+ 42.0 1.0 4.0 140.0 226.0 0.0 0.0 178.0 0.0 0.0 1.0 0.0 3.0 1
134
+ 64.0 1.0 4.0 120.0 246.0 0.0 2.0 96.0 1.0 2.2 3.0 1.0 3.0 2
135
+ 54.0 1.0 3.0 150.0 232.0 0.0 2.0 165.0 0.0 1.6 1.0 0.0 7.0 1
136
+ 46.0 0.0 3.0 142.0 177.0 0.0 2.0 160.0 1.0 1.4 3.0 0.0 3.0 1
137
+ 67.0 0.0 3.0 152.0 277.0 0.0 0.0 172.0 0.0 0.0 1.0 1.0 3.0 1
138
+ 56.0 1.0 4.0 125.0 249.0 1.0 2.0 144.0 1.0 1.2 2.0 1.0 3.0 2
139
+ 34.0 0.0 2.0 118.0 210.0 0.0 0.0 192.0 0.0 0.7 1.0 0.0 3.0 1
140
+ 57.0 1.0 4.0 132.0 207.0 0.0 0.0 168.0 1.0 0.0 1.0 0.0 7.0 1
141
+ 64.0 1.0 4.0 145.0 212.0 0.0 2.0 132.0 0.0 2.0 2.0 2.0 6.0 2
142
+ 59.0 1.0 4.0 138.0 271.0 0.0 2.0 182.0 0.0 0.0 1.0 0.0 3.0 1
143
+ 50.0 1.0 3.0 140.0 233.0 0.0 0.0 163.0 0.0 0.6 2.0 1.0 7.0 2
144
+ 51.0 1.0 1.0 125.0 213.0 0.0 2.0 125.0 1.0 1.4 1.0 1.0 3.0 1
145
+ 54.0 1.0 2.0 192.0 283.0 0.0 2.0 195.0 0.0 0.0 1.0 1.0 7.0 2
146
+ 53.0 1.0 4.0 123.0 282.0 0.0 0.0 95.0 1.0 2.0 2.0 2.0 7.0 2
147
+ 52.0 1.0 4.0 112.0 230.0 0.0 0.0 160.0 0.0 0.0 1.0 1.0 3.0 2
148
+ 40.0 1.0 4.0 110.0 167.0 0.0 2.0 114.0 1.0 2.0 2.0 0.0 7.0 2
149
+ 58.0 1.0 3.0 132.0 224.0 0.0 2.0 173.0 0.0 3.2 1.0 2.0 7.0 2
150
+ 41.0 0.0 3.0 112.0 268.0 0.0 2.0 172.0 1.0 0.0 1.0 0.0 3.0 1
151
+ 41.0 1.0 3.0 112.0 250.0 0.0 0.0 179.0 0.0 0.0 1.0 0.0 3.0 1
152
+ 50.0 0.0 3.0 120.0 219.0 0.0 0.0 158.0 0.0 1.6 2.0 0.0 3.0 1
153
+ 54.0 0.0 3.0 108.0 267.0 0.0 2.0 167.0 0.0 0.0 1.0 0.0 3.0 1
154
+ 64.0 0.0 4.0 130.0 303.0 0.0 0.0 122.0 0.0 2.0 2.0 2.0 3.0 1
155
+ 51.0 0.0 3.0 130.0 256.0 0.0 2.0 149.0 0.0 0.5 1.0 0.0 3.0 1
156
+ 46.0 0.0 2.0 105.0 204.0 0.0 0.0 172.0 0.0 0.0 1.0 0.0 3.0 1
157
+ 55.0 1.0 4.0 140.0 217.0 0.0 0.0 111.0 1.0 5.6 3.0 0.0 7.0 2
158
+ 45.0 1.0 2.0 128.0 308.0 0.0 2.0 170.0 0.0 0.0 1.0 0.0 3.0 1
159
+ 56.0 1.0 1.0 120.0 193.0 0.0 2.0 162.0 0.0 1.9 2.0 0.0 7.0 1
160
+ 66.0 0.0 4.0 178.0 228.0 1.0 0.0 165.0 1.0 1.0 2.0 2.0 7.0 2
161
+ 38.0 1.0 1.0 120.0 231.0 0.0 0.0 182.0 1.0 3.8 2.0 0.0 7.0 2
162
+ 62.0 0.0 4.0 150.0 244.0 0.0 0.0 154.0 1.0 1.4 2.0 0.0 3.0 2
163
+ 55.0 1.0 2.0 130.0 262.0 0.0 0.0 155.0 0.0 0.0 1.0 0.0 3.0 1
164
+ 58.0 1.0 4.0 128.0 259.0 0.0 2.0 130.0 1.0 3.0 2.0 2.0 7.0 2
165
+ 43.0 1.0 4.0 110.0 211.0 0.0 0.0 161.0 0.0 0.0 1.0 0.0 7.0 1
166
+ 64.0 0.0 4.0 180.0 325.0 0.0 0.0 154.0 1.0 0.0 1.0 0.0 3.0 1
167
+ 50.0 0.0 4.0 110.0 254.0 0.0 2.0 159.0 0.0 0.0 1.0 0.0 3.0 1
168
+ 53.0 1.0 3.0 130.0 197.0 1.0 2.0 152.0 0.0 1.2 3.0 0.0 3.0 1
169
+ 45.0 0.0 4.0 138.0 236.0 0.0 2.0 152.0 1.0 0.2 2.0 0.0 3.0 1
170
+ 65.0 1.0 1.0 138.0 282.0 1.0 2.0 174.0 0.0 1.4 2.0 1.0 3.0 2
171
+ 69.0 1.0 1.0 160.0 234.0 1.0 2.0 131.0 0.0 0.1 2.0 1.0 3.0 1
172
+ 69.0 1.0 3.0 140.0 254.0 0.0 2.0 146.0 0.0 2.0 2.0 3.0 7.0 2
173
+ 67.0 1.0 4.0 100.0 299.0 0.0 2.0 125.0 1.0 0.9 2.0 2.0 3.0 2
174
+ 68.0 0.0 3.0 120.0 211.0 0.0 2.0 115.0 0.0 1.5 2.0 0.0 3.0 1
175
+ 34.0 1.0 1.0 118.0 182.0 0.0 2.0 174.0 0.0 0.0 1.0 0.0 3.0 1
176
+ 62.0 0.0 4.0 138.0 294.0 1.0 0.0 106.0 0.0 1.9 2.0 3.0 3.0 2
177
+ 51.0 1.0 4.0 140.0 298.0 0.0 0.0 122.0 1.0 4.2 2.0 3.0 7.0 2
178
+ 46.0 1.0 3.0 150.0 231.0 0.0 0.0 147.0 0.0 3.6 2.0 0.0 3.0 2
179
+ 67.0 1.0 4.0 125.0 254.0 1.0 0.0 163.0 0.0 0.2 2.0 2.0 7.0 2
180
+ 50.0 1.0 3.0 129.0 196.0 0.0 0.0 163.0 0.0 0.0 1.0 0.0 3.0 1
181
+ 42.0 1.0 3.0 120.0 240.0 1.0 0.0 194.0 0.0 0.8 3.0 0.0 7.0 1
182
+ 56.0 0.0 4.0 134.0 409.0 0.0 2.0 150.0 1.0 1.9 2.0 2.0 7.0 2
183
+ 41.0 1.0 4.0 110.0 172.0 0.0 2.0 158.0 0.0 0.0 1.0 0.0 7.0 2
184
+ 42.0 0.0 4.0 102.0 265.0 0.0 2.0 122.0 0.0 0.6 2.0 0.0 3.0 1
185
+ 53.0 1.0 3.0 130.0 246.0 1.0 2.0 173.0 0.0 0.0 1.0 3.0 3.0 1
186
+ 43.0 1.0 3.0 130.0 315.0 0.0 0.0 162.0 0.0 1.9 1.0 1.0 3.0 1
187
+ 56.0 1.0 4.0 132.0 184.0 0.0 2.0 105.0 1.0 2.1 2.0 1.0 6.0 2
188
+ 52.0 1.0 4.0 108.0 233.0 1.0 0.0 147.0 0.0 0.1 1.0 3.0 7.0 1
189
+ 62.0 0.0 4.0 140.0 394.0 0.0 2.0 157.0 0.0 1.2 2.0 0.0 3.0 1
190
+ 70.0 1.0 3.0 160.0 269.0 0.0 0.0 112.0 1.0 2.9 2.0 1.0 7.0 2
191
+ 54.0 1.0 4.0 140.0 239.0 0.0 0.0 160.0 0.0 1.2 1.0 0.0 3.0 1
192
+ 70.0 1.0 4.0 145.0 174.0 0.0 0.0 125.0 1.0 2.6 3.0 0.0 7.0 2
193
+ 54.0 1.0 2.0 108.0 309.0 0.0 0.0 156.0 0.0 0.0 1.0 0.0 7.0 1
194
+ 35.0 1.0 4.0 126.0 282.0 0.0 2.0 156.0 1.0 0.0 1.0 0.0 7.0 2
195
+ 48.0 1.0 3.0 124.0 255.0 1.0 0.0 175.0 0.0 0.0 1.0 2.0 3.0 1
196
+ 55.0 0.0 2.0 135.0 250.0 0.0 2.0 161.0 0.0 1.4 2.0 0.0 3.0 1
197
+ 58.0 0.0 4.0 100.0 248.0 0.0 2.0 122.0 0.0 1.0 2.0 0.0 3.0 1
198
+ 54.0 0.0 3.0 110.0 214.0 0.0 0.0 158.0 0.0 1.6 2.0 0.0 3.0 1
199
+ 69.0 0.0 1.0 140.0 239.0 0.0 0.0 151.0 0.0 1.8 1.0 2.0 3.0 1
200
+ 77.0 1.0 4.0 125.0 304.0 0.0 2.0 162.0 1.0 0.0 1.0 3.0 3.0 2
201
+ 68.0 1.0 3.0 118.0 277.0 0.0 0.0 151.0 0.0 1.0 1.0 1.0 7.0 1
202
+ 58.0 1.0 4.0 125.0 300.0 0.0 2.0 171.0 0.0 0.0 1.0 2.0 7.0 2
203
+ 60.0 1.0 4.0 125.0 258.0 0.0 2.0 141.0 1.0 2.8 2.0 1.0 7.0 2
204
+ 51.0 1.0 4.0 140.0 299.0 0.0 0.0 173.0 1.0 1.6 1.0 0.0 7.0 2
205
+ 55.0 1.0 4.0 160.0 289.0 0.0 2.0 145.0 1.0 0.8 2.0 1.0 7.0 2
206
+ 52.0 1.0 1.0 152.0 298.0 1.0 0.0 178.0 0.0 1.2 2.0 0.0 7.0 1
207
+ 60.0 0.0 3.0 102.0 318.0 0.0 0.0 160.0 0.0 0.0 1.0 1.0 3.0 1
208
+ 58.0 1.0 3.0 105.0 240.0 0.0 2.0 154.0 1.0 0.6 2.0 0.0 7.0 1
209
+ 64.0 1.0 3.0 125.0 309.0 0.0 0.0 131.0 1.0 1.8 2.0 0.0 7.0 2
210
+ 37.0 1.0 3.0 130.0 250.0 0.0 0.0 187.0 0.0 3.5 3.0 0.0 3.0 1
211
+ 59.0 1.0 1.0 170.0 288.0 0.0 2.0 159.0 0.0 0.2 2.0 0.0 7.0 2
212
+ 51.0 1.0 3.0 125.0 245.0 1.0 2.0 166.0 0.0 2.4 2.0 0.0 3.0 1
213
+ 43.0 0.0 3.0 122.0 213.0 0.0 0.0 165.0 0.0 0.2 2.0 0.0 3.0 1
214
+ 58.0 1.0 4.0 128.0 216.0 0.0 2.0 131.0 1.0 2.2 2.0 3.0 7.0 2
215
+ 29.0 1.0 2.0 130.0 204.0 0.0 2.0 202.0 0.0 0.0 1.0 0.0 3.0 1
216
+ 41.0 0.0 2.0 130.0 204.0 0.0 2.0 172.0 0.0 1.4 1.0 0.0 3.0 1
217
+ 63.0 0.0 3.0 135.0 252.0 0.0 2.0 172.0 0.0 0.0 1.0 0.0 3.0 1
218
+ 51.0 1.0 3.0 94.0 227.0 0.0 0.0 154.0 1.0 0.0 1.0 1.0 7.0 1
219
+ 54.0 1.0 3.0 120.0 258.0 0.0 2.0 147.0 0.0 0.4 2.0 0.0 7.0 1
220
+ 44.0 1.0 2.0 120.0 220.0 0.0 0.0 170.0 0.0 0.0 1.0 0.0 3.0 1
221
+ 54.0 1.0 4.0 110.0 239.0 0.0 0.0 126.0 1.0 2.8 2.0 1.0 7.0 2
222
+ 65.0 1.0 4.0 135.0 254.0 0.0 2.0 127.0 0.0 2.8 2.0 1.0 7.0 2
223
+ 57.0 1.0 3.0 150.0 168.0 0.0 0.0 174.0 0.0 1.6 1.0 0.0 3.0 1
224
+ 63.0 1.0 4.0 130.0 330.0 1.0 2.0 132.0 1.0 1.8 1.0 3.0 7.0 2
225
+ 35.0 0.0 4.0 138.0 183.0 0.0 0.0 182.0 0.0 1.4 1.0 0.0 3.0 1
226
+ 41.0 1.0 2.0 135.0 203.0 0.0 0.0 132.0 0.0 0.0 2.0 0.0 6.0 1
227
+ 62.0 0.0 3.0 130.0 263.0 0.0 0.0 97.0 0.0 1.2 2.0 1.0 7.0 2
228
+ 43.0 0.0 4.0 132.0 341.0 1.0 2.0 136.0 1.0 3.0 2.0 0.0 7.0 2
229
+ 58.0 0.0 1.0 150.0 283.0 1.0 2.0 162.0 0.0 1.0 1.0 0.0 3.0 1
230
+ 52.0 1.0 1.0 118.0 186.0 0.0 2.0 190.0 0.0 0.0 2.0 0.0 6.0 1
231
+ 61.0 0.0 4.0 145.0 307.0 0.0 2.0 146.0 1.0 1.0 2.0 0.0 7.0 2
232
+ 39.0 1.0 4.0 118.0 219.0 0.0 0.0 140.0 0.0 1.2 2.0 0.0 7.0 2
233
+ 45.0 1.0 4.0 115.0 260.0 0.0 2.0 185.0 0.0 0.0 1.0 0.0 3.0 1
234
+ 52.0 1.0 4.0 128.0 255.0 0.0 0.0 161.0 1.0 0.0 1.0 1.0 7.0 2
235
+ 62.0 1.0 3.0 130.0 231.0 0.0 0.0 146.0 0.0 1.8 2.0 3.0 7.0 1
236
+ 62.0 0.0 4.0 160.0 164.0 0.0 2.0 145.0 0.0 6.2 3.0 3.0 7.0 2
237
+ 53.0 0.0 4.0 138.0 234.0 0.0 2.0 160.0 0.0 0.0 1.0 0.0 3.0 1
238
+ 43.0 1.0 4.0 120.0 177.0 0.0 2.0 120.0 1.0 2.5 2.0 0.0 7.0 2
239
+ 47.0 1.0 3.0 138.0 257.0 0.0 2.0 156.0 0.0 0.0 1.0 0.0 3.0 1
240
+ 52.0 1.0 2.0 120.0 325.0 0.0 0.0 172.0 0.0 0.2 1.0 0.0 3.0 1
241
+ 68.0 1.0 3.0 180.0 274.0 1.0 2.0 150.0 1.0 1.6 2.0 0.0 7.0 2
242
+ 39.0 1.0 3.0 140.0 321.0 0.0 2.0 182.0 0.0 0.0 1.0 0.0 3.0 1
243
+ 53.0 0.0 4.0 130.0 264.0 0.0 2.0 143.0 0.0 0.4 2.0 0.0 3.0 1
244
+ 62.0 0.0 4.0 140.0 268.0 0.0 2.0 160.0 0.0 3.6 3.0 2.0 3.0 2
245
+ 51.0 0.0 3.0 140.0 308.0 0.0 2.0 142.0 0.0 1.5 1.0 1.0 3.0 1
246
+ 60.0 1.0 4.0 130.0 253.0 0.0 0.0 144.0 1.0 1.4 1.0 1.0 7.0 2
247
+ 65.0 1.0 4.0 110.0 248.0 0.0 2.0 158.0 0.0 0.6 1.0 2.0 6.0 2
248
+ 65.0 0.0 3.0 155.0 269.0 0.0 0.0 148.0 0.0 0.8 1.0 0.0 3.0 1
249
+ 60.0 1.0 3.0 140.0 185.0 0.0 2.0 155.0 0.0 3.0 2.0 0.0 3.0 2
250
+ 60.0 1.0 4.0 145.0 282.0 0.0 2.0 142.0 1.0 2.8 2.0 2.0 7.0 2
251
+ 54.0 1.0 4.0 120.0 188.0 0.0 0.0 113.0 0.0 1.4 2.0 1.0 7.0 2
252
+ 44.0 1.0 2.0 130.0 219.0 0.0 2.0 188.0 0.0 0.0 1.0 0.0 3.0 1
253
+ 44.0 1.0 4.0 112.0 290.0 0.0 2.0 153.0 0.0 0.0 1.0 1.0 3.0 2
254
+ 51.0 1.0 3.0 110.0 175.0 0.0 0.0 123.0 0.0 0.6 1.0 0.0 3.0 1
255
+ 59.0 1.0 3.0 150.0 212.0 1.0 0.0 157.0 0.0 1.6 1.0 0.0 3.0 1
256
+ 71.0 0.0 2.0 160.0 302.0 0.0 0.0 162.0 0.0 0.4 1.0 2.0 3.0 1
257
+ 61.0 1.0 3.0 150.0 243.0 1.0 0.0 137.0 1.0 1.0 2.0 0.0 3.0 1
258
+ 55.0 1.0 4.0 132.0 353.0 0.0 0.0 132.0 1.0 1.2 2.0 1.0 7.0 2
259
+ 64.0 1.0 3.0 140.0 335.0 0.0 0.0 158.0 0.0 0.0 1.0 0.0 3.0 2
260
+ 43.0 1.0 4.0 150.0 247.0 0.0 0.0 171.0 0.0 1.5 1.0 0.0 3.0 1
261
+ 58.0 0.0 3.0 120.0 340.0 0.0 0.0 172.0 0.0 0.0 1.0 0.0 3.0 1
262
+ 60.0 1.0 4.0 130.0 206.0 0.0 2.0 132.0 1.0 2.4 2.0 2.0 7.0 2
263
+ 58.0 1.0 2.0 120.0 284.0 0.0 2.0 160.0 0.0 1.8 2.0 0.0 3.0 2
264
+ 49.0 1.0 2.0 130.0 266.0 0.0 0.0 171.0 0.0 0.6 1.0 0.0 3.0 1
265
+ 48.0 1.0 2.0 110.0 229.0 0.0 0.0 168.0 0.0 1.0 3.0 0.0 7.0 2
266
+ 52.0 1.0 3.0 172.0 199.0 1.0 0.0 162.0 0.0 0.5 1.0 0.0 7.0 1
267
+ 44.0 1.0 2.0 120.0 263.0 0.0 0.0 173.0 0.0 0.0 1.0 0.0 7.0 1
268
+ 56.0 0.0 2.0 140.0 294.0 0.0 2.0 153.0 0.0 1.3 2.0 0.0 3.0 1
269
+ 57.0 1.0 4.0 140.0 192.0 0.0 0.0 148.0 0.0 0.4 2.0 0.0 6.0 1
270
+ 67.0 1.0 4.0 160.0 286.0 0.0 2.0 108.0 1.0 1.5 2.0 3.0 3.0 2
requirements.txt ADDED
@@ -0,0 +1 @@
 
 
1
+ scikit-learn
svm.pkl ADDED
Binary file (16.6 kB). View file