Style-Bert-VITS2-AKT / train_ms.py
kkvc
up
5049dc3
raw
history blame
31.9 kB
import argparse
import datetime
import gc
import os
import platform
import torch
import torch.distributed as dist
from torch.cuda.amp import GradScaler, autocast
from torch.nn import functional as F
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
from tqdm import tqdm
# logging.getLogger("numba").setLevel(logging.WARNING)
import commons
import default_style
import utils
from common.log import logger
from common.stdout_wrapper import SAFE_STDOUT
from config import config
from data_utils import (
DistributedBucketSampler,
TextAudioSpeakerCollate,
TextAudioSpeakerLoader,
)
from losses import discriminator_loss, feature_loss, generator_loss, kl_loss
from mel_processing import mel_spectrogram_torch, spec_to_mel_torch
from models import DurationDiscriminator, MultiPeriodDiscriminator, SynthesizerTrn
from text.symbols import symbols
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = (
True # If encontered training problem,please try to disable TF32.
)
torch.set_float32_matmul_precision("medium")
torch.backends.cuda.sdp_kernel("flash")
torch.backends.cuda.enable_flash_sdp(True)
torch.backends.cuda.enable_mem_efficient_sdp(
True
) # Not available if torch version is lower than 2.0
torch.backends.cuda.enable_math_sdp(True)
global_step = 0
def run():
# Command line configuration is not recommended unless necessary, use config.yml
parser = argparse.ArgumentParser()
parser.add_argument(
"-c",
"--config",
type=str,
default=config.train_ms_config.config_path,
help="JSON file for configuration",
)
parser.add_argument(
"-m",
"--model",
type=str,
help="数据集文件夹路径,请注意,数据不再默认放在/logs文件夹下。如果需要用命令行配置,请声明相对于根目录的路径",
default=config.dataset_path,
)
parser.add_argument(
"--assets_root",
type=str,
help="Root directory of model assets needed for inference.",
default=config.assets_root,
)
parser.add_argument(
"--skip_default_style",
action="store_true",
help="Skip saving default style config and mean vector.",
)
parser.add_argument(
"--no_progress_bar",
action="store_true",
help="Do not show the progress bar while training.",
)
parser.add_argument(
"--speedup",
action="store_true",
help="Speed up training by disabling logging and evaluation.",
)
args = parser.parse_args()
# Set log file
model_dir = os.path.join(args.model, config.train_ms_config.model_dir)
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
logger.add(os.path.join(args.model, f"train_{timestamp}.log"))
# Parsing environment variables
envs = config.train_ms_config.env
for env_name, env_value in envs.items():
if env_name not in os.environ.keys():
logger.info("Loading configuration from config {}".format(str(env_value)))
os.environ[env_name] = str(env_value)
logger.info(
"Loading environment variables \nMASTER_ADDR: {},\nMASTER_PORT: {},\nWORLD_SIZE: {},\nRANK: {},\nLOCAL_RANK: {}".format(
os.environ["MASTER_ADDR"],
os.environ["MASTER_PORT"],
os.environ["WORLD_SIZE"],
os.environ["RANK"],
os.environ["LOCAL_RANK"],
)
)
backend = "nccl"
if platform.system() == "Windows":
backend = "gloo" # If Windows,switch to gloo backend.
dist.init_process_group(
backend=backend,
init_method="env://",
timeout=datetime.timedelta(seconds=300),
) # Use torchrun instead of mp.spawn
rank = dist.get_rank()
local_rank = int(os.environ["LOCAL_RANK"])
n_gpus = dist.get_world_size()
hps = utils.get_hparams_from_file(args.config)
# This is needed because we have to pass values to `train_and_evaluate()`
hps.model_dir = model_dir
hps.speedup = args.speedup
# 比较路径是否相同
if os.path.realpath(args.config) != os.path.realpath(
config.train_ms_config.config_path
):
with open(args.config, "r", encoding="utf-8") as f:
data = f.read()
os.makedirs(os.path.dirname(config.train_ms_config.config_path), exist_ok=True)
with open(config.train_ms_config.config_path, "w", encoding="utf-8") as f:
f.write(data)
"""
Path constants are a bit complicated...
TODO: Refactor or rename these?
(Both `config.yml` and `config.json` are used, which is confusing I think.)
args.model: For saving all info needed for training.
default: `Data/{model_name}`.
hps.model_dir := model_dir: For saving checkpoints (for resuming training).
default: `Data/{model_name}/models`.
(Use `hps` since we have to pass `model_dir` to `train_and_evaluate()`.
args.assets_root: The root directory of model assets needed for inference.
default: config.assets_root == `model_assets`.
config.out_dir: The directory for model assets of this model (for inference).
default: `model_assets/{model_name}`.
"""
os.makedirs(config.out_dir, exist_ok=True)
if not args.skip_default_style:
# Save default style to out_dir
default_style.set_style_config(
args.config, os.path.join(config.out_dir, "config.json")
)
default_style.save_mean_vector(
os.path.join(args.model, "wavs"),
os.path.join(config.out_dir, "style_vectors.npy"),
)
torch.manual_seed(hps.train.seed)
torch.cuda.set_device(local_rank)
global global_step
writer = None
writer_eval = None
if rank == 0 and not args.speedup:
# logger = utils.get_logger(hps.model_dir)
# logger.info(hps)
utils.check_git_hash(model_dir)
writer = SummaryWriter(log_dir=model_dir)
writer_eval = SummaryWriter(log_dir=os.path.join(model_dir, "eval"))
train_dataset = TextAudioSpeakerLoader(hps.data.training_files, hps.data)
train_sampler = DistributedBucketSampler(
train_dataset,
hps.train.batch_size,
[32, 300, 400, 500, 600, 700, 800, 900, 1000],
num_replicas=n_gpus,
rank=rank,
shuffle=True,
)
collate_fn = TextAudioSpeakerCollate()
train_loader = DataLoader(
train_dataset,
# メモリ消費量を減らそうとnum_workersを1にしてみる
# num_workers=min(config.train_ms_config.num_workers, os.cpu_count() // 2),
num_workers=1,
shuffle=False,
pin_memory=True,
collate_fn=collate_fn,
batch_sampler=train_sampler,
persistent_workers=True,
# これもメモリ消費量を減らそうとしてコメントアウト
# prefetch_factor=4,
) # DataLoader config could be adjusted.
eval_dataset = None
eval_loader = None
if rank == 0 and not args.speedup:
eval_dataset = TextAudioSpeakerLoader(hps.data.validation_files, hps.data)
eval_loader = DataLoader(
eval_dataset,
num_workers=0,
shuffle=False,
batch_size=1,
pin_memory=True,
drop_last=False,
collate_fn=collate_fn,
)
if (
"use_noise_scaled_mas" in hps.model.keys()
and hps.model.use_noise_scaled_mas is True
):
logger.info("Using noise scaled MAS for VITS2")
mas_noise_scale_initial = 0.01
noise_scale_delta = 2e-6
else:
logger.info("Using normal MAS for VITS1")
mas_noise_scale_initial = 0.0
noise_scale_delta = 0.0
if (
"use_duration_discriminator" in hps.model.keys()
and hps.model.use_duration_discriminator is True
):
logger.info("Using duration discriminator for VITS2")
net_dur_disc = DurationDiscriminator(
hps.model.hidden_channels,
hps.model.hidden_channels,
3,
0.1,
gin_channels=hps.model.gin_channels if hps.data.n_speakers != 0 else 0,
).cuda(local_rank)
if (
"use_spk_conditioned_encoder" in hps.model.keys()
and hps.model.use_spk_conditioned_encoder is True
):
if hps.data.n_speakers == 0:
raise ValueError(
"n_speakers must be > 0 when using spk conditioned encoder to train multi-speaker model"
)
else:
logger.info("Using normal encoder for VITS1")
net_g = SynthesizerTrn(
len(symbols),
hps.data.filter_length // 2 + 1,
hps.train.segment_size // hps.data.hop_length,
n_speakers=hps.data.n_speakers,
mas_noise_scale_initial=mas_noise_scale_initial,
noise_scale_delta=noise_scale_delta,
**hps.model,
).cuda(local_rank)
if getattr(hps.train, "freeze_ZH_bert", False):
logger.info("Freezing ZH bert encoder !!!")
for param in net_g.enc_p.bert_proj.parameters():
param.requires_grad = False
if getattr(hps.train, "freeze_EN_bert", False):
logger.info("Freezing EN bert encoder !!!")
for param in net_g.enc_p.en_bert_proj.parameters():
param.requires_grad = False
if getattr(hps.train, "freeze_JP_bert", False):
logger.info("Freezing JP bert encoder !!!")
for param in net_g.enc_p.ja_bert_proj.parameters():
param.requires_grad = False
if getattr(hps.train, "freeze_style", False):
logger.info("Freezing style encoder !!!")
for param in net_g.enc_p.style_proj.parameters():
param.requires_grad = False
net_d = MultiPeriodDiscriminator(hps.model.use_spectral_norm).cuda(local_rank)
optim_g = torch.optim.AdamW(
filter(lambda p: p.requires_grad, net_g.parameters()),
hps.train.learning_rate,
betas=hps.train.betas,
eps=hps.train.eps,
)
optim_d = torch.optim.AdamW(
net_d.parameters(),
hps.train.learning_rate,
betas=hps.train.betas,
eps=hps.train.eps,
)
if net_dur_disc is not None:
optim_dur_disc = torch.optim.AdamW(
net_dur_disc.parameters(),
hps.train.learning_rate,
betas=hps.train.betas,
eps=hps.train.eps,
)
else:
optim_dur_disc = None
net_g = DDP(net_g, device_ids=[local_rank])
net_d = DDP(net_d, device_ids=[local_rank])
dur_resume_lr = None
if net_dur_disc is not None:
net_dur_disc = DDP(
net_dur_disc, device_ids=[local_rank], find_unused_parameters=True
)
if utils.is_resuming(model_dir):
if net_dur_disc is not None:
_, _, dur_resume_lr, epoch_str = utils.load_checkpoint(
utils.latest_checkpoint_path(model_dir, "DUR_*.pth"),
net_dur_disc,
optim_dur_disc,
skip_optimizer=(
hps.train.skip_optimizer if "skip_optimizer" in hps.train else True
),
)
if not optim_dur_disc.param_groups[0].get("initial_lr"):
optim_dur_disc.param_groups[0]["initial_lr"] = dur_resume_lr
_, optim_g, g_resume_lr, epoch_str = utils.load_checkpoint(
utils.latest_checkpoint_path(model_dir, "G_*.pth"),
net_g,
optim_g,
skip_optimizer=(
hps.train.skip_optimizer if "skip_optimizer" in hps.train else True
),
)
_, optim_d, d_resume_lr, epoch_str = utils.load_checkpoint(
utils.latest_checkpoint_path(model_dir, "D_*.pth"),
net_d,
optim_d,
skip_optimizer=(
hps.train.skip_optimizer if "skip_optimizer" in hps.train else True
),
)
if not optim_g.param_groups[0].get("initial_lr"):
optim_g.param_groups[0]["initial_lr"] = g_resume_lr
if not optim_d.param_groups[0].get("initial_lr"):
optim_d.param_groups[0]["initial_lr"] = d_resume_lr
epoch_str = max(epoch_str, 1)
# global_step = (epoch_str - 1) * len(train_loader)
global_step = int(
utils.get_steps(utils.latest_checkpoint_path(model_dir, "G_*.pth"))
)
logger.info(
f"******************Found the model. Current epoch is {epoch_str}, gloabl step is {global_step}*********************"
)
else:
try:
_ = utils.load_safetensors(
os.path.join(model_dir, "G_0.safetensors"), net_g
)
_ = utils.load_safetensors(
os.path.join(model_dir, "D_0.safetensors"), net_d
)
if net_dur_disc is not None:
_ = utils.load_safetensors(
os.path.join(model_dir, "DUR_0.safetensors"), net_dur_disc
)
logger.info("Loaded the pretrained models.")
except Exception as e:
logger.warning(e)
logger.warning(
"It seems that you are not using the pretrained models, so we will train from scratch."
)
finally:
epoch_str = 1
global_step = 0
def lr_lambda(epoch):
"""
Learning rate scheduler for warmup and exponential decay.
- During the warmup period, the learning rate increases linearly.
- After the warmup period, the learning rate decreases exponentially.
"""
if epoch < hps.train.warmup_epochs:
return float(epoch) / float(max(1, hps.train.warmup_epochs))
else:
return hps.train.lr_decay ** (epoch - hps.train.warmup_epochs)
scheduler_last_epoch = epoch_str - 2
scheduler_g = torch.optim.lr_scheduler.LambdaLR(
optim_g, lr_lambda=lr_lambda, last_epoch=scheduler_last_epoch
)
scheduler_d = torch.optim.lr_scheduler.LambdaLR(
optim_d, lr_lambda=lr_lambda, last_epoch=scheduler_last_epoch
)
if net_dur_disc is not None:
scheduler_dur_disc = torch.optim.lr_scheduler.LambdaLR(
optim_dur_disc, lr_lambda=lr_lambda, last_epoch=scheduler_last_epoch
)
else:
scheduler_dur_disc = None
scaler = GradScaler(enabled=hps.train.bf16_run)
logger.info("Start training.")
diff = abs(
epoch_str * len(train_loader) - (hps.train.epochs + 1) * len(train_loader)
)
pbar = None
if not args.no_progress_bar:
pbar = tqdm(
total=global_step + diff,
initial=global_step,
smoothing=0.05,
file=SAFE_STDOUT,
)
initial_step = global_step
for epoch in range(epoch_str, hps.train.epochs + 1):
if rank == 0:
train_and_evaluate(
rank,
local_rank,
epoch,
hps,
[net_g, net_d, net_dur_disc],
[optim_g, optim_d, optim_dur_disc],
[scheduler_g, scheduler_d, scheduler_dur_disc],
scaler,
[train_loader, eval_loader],
logger,
[writer, writer_eval],
pbar,
initial_step,
)
else:
train_and_evaluate(
rank,
local_rank,
epoch,
hps,
[net_g, net_d, net_dur_disc],
[optim_g, optim_d, optim_dur_disc],
[scheduler_g, scheduler_d, scheduler_dur_disc],
scaler,
[train_loader, None],
None,
None,
pbar,
initial_step,
)
scheduler_g.step()
scheduler_d.step()
if net_dur_disc is not None:
scheduler_dur_disc.step()
if epoch == hps.train.epochs:
# Save the final models
utils.save_checkpoint(
net_g,
optim_g,
hps.train.learning_rate,
epoch,
os.path.join(model_dir, "G_{}.pth".format(global_step)),
)
utils.save_checkpoint(
net_d,
optim_d,
hps.train.learning_rate,
epoch,
os.path.join(model_dir, "D_{}.pth".format(global_step)),
)
if net_dur_disc is not None:
utils.save_checkpoint(
net_dur_disc,
optim_dur_disc,
hps.train.learning_rate,
epoch,
os.path.join(model_dir, "DUR_{}.pth".format(global_step)),
)
utils.save_safetensors(
net_g,
epoch,
os.path.join(
config.out_dir,
f"{config.model_name}_e{epoch}_s{global_step}.safetensors",
),
for_infer=True,
)
if pbar is not None:
pbar.close()
def train_and_evaluate(
rank,
local_rank,
epoch,
hps,
nets,
optims,
schedulers,
scaler,
loaders,
logger,
writers,
pbar: tqdm,
initial_step: int,
):
net_g, net_d, net_dur_disc = nets
optim_g, optim_d, optim_dur_disc = optims
scheduler_g, scheduler_d, scheduler_dur_disc = schedulers
train_loader, eval_loader = loaders
if writers is not None:
writer, writer_eval = writers
train_loader.batch_sampler.set_epoch(epoch)
global global_step
net_g.train()
net_d.train()
if net_dur_disc is not None:
net_dur_disc.train()
for batch_idx, (
x,
x_lengths,
spec,
spec_lengths,
y,
y_lengths,
speakers,
tone,
language,
bert,
ja_bert,
en_bert,
style_vec,
) in enumerate(train_loader):
if net_g.module.use_noise_scaled_mas:
current_mas_noise_scale = (
net_g.module.mas_noise_scale_initial
- net_g.module.noise_scale_delta * global_step
)
net_g.module.current_mas_noise_scale = max(current_mas_noise_scale, 0.0)
x, x_lengths = x.cuda(local_rank, non_blocking=True), x_lengths.cuda(
local_rank, non_blocking=True
)
spec, spec_lengths = spec.cuda(
local_rank, non_blocking=True
), spec_lengths.cuda(local_rank, non_blocking=True)
y, y_lengths = y.cuda(local_rank, non_blocking=True), y_lengths.cuda(
local_rank, non_blocking=True
)
speakers = speakers.cuda(local_rank, non_blocking=True)
tone = tone.cuda(local_rank, non_blocking=True)
language = language.cuda(local_rank, non_blocking=True)
bert = bert.cuda(local_rank, non_blocking=True)
ja_bert = ja_bert.cuda(local_rank, non_blocking=True)
en_bert = en_bert.cuda(local_rank, non_blocking=True)
style_vec = style_vec.cuda(local_rank, non_blocking=True)
with autocast(enabled=hps.train.bf16_run, dtype=torch.bfloat16):
(
y_hat,
l_length,
attn,
ids_slice,
x_mask,
z_mask,
(z, z_p, m_p, logs_p, m_q, logs_q),
(hidden_x, logw, logw_),
) = net_g(
x,
x_lengths,
spec,
spec_lengths,
speakers,
tone,
language,
bert,
ja_bert,
en_bert,
style_vec,
)
mel = spec_to_mel_torch(
spec,
hps.data.filter_length,
hps.data.n_mel_channels,
hps.data.sampling_rate,
hps.data.mel_fmin,
hps.data.mel_fmax,
)
y_mel = commons.slice_segments(
mel, ids_slice, hps.train.segment_size // hps.data.hop_length
)
y_hat_mel = mel_spectrogram_torch(
y_hat.squeeze(1).float(),
hps.data.filter_length,
hps.data.n_mel_channels,
hps.data.sampling_rate,
hps.data.hop_length,
hps.data.win_length,
hps.data.mel_fmin,
hps.data.mel_fmax,
)
y = commons.slice_segments(
y, ids_slice * hps.data.hop_length, hps.train.segment_size
) # slice
# Discriminator
y_d_hat_r, y_d_hat_g, _, _ = net_d(y, y_hat.detach())
with autocast(enabled=hps.train.bf16_run, dtype=torch.bfloat16):
loss_disc, losses_disc_r, losses_disc_g = discriminator_loss(
y_d_hat_r, y_d_hat_g
)
loss_disc_all = loss_disc
if net_dur_disc is not None:
y_dur_hat_r, y_dur_hat_g = net_dur_disc(
hidden_x.detach(), x_mask.detach(), logw.detach(), logw_.detach()
)
with autocast(enabled=hps.train.bf16_run, dtype=torch.bfloat16):
# TODO: I think need to mean using the mask, but for now, just mean all
(
loss_dur_disc,
losses_dur_disc_r,
losses_dur_disc_g,
) = discriminator_loss(y_dur_hat_r, y_dur_hat_g)
loss_dur_disc_all = loss_dur_disc
optim_dur_disc.zero_grad()
scaler.scale(loss_dur_disc_all).backward()
scaler.unscale_(optim_dur_disc)
commons.clip_grad_value_(net_dur_disc.parameters(), None)
scaler.step(optim_dur_disc)
optim_d.zero_grad()
scaler.scale(loss_disc_all).backward()
scaler.unscale_(optim_d)
if getattr(hps.train, "bf16_run", False):
torch.nn.utils.clip_grad_norm_(parameters=net_d.parameters(), max_norm=200)
grad_norm_d = commons.clip_grad_value_(net_d.parameters(), None)
scaler.step(optim_d)
with autocast(enabled=hps.train.bf16_run, dtype=torch.bfloat16):
# Generator
y_d_hat_r, y_d_hat_g, fmap_r, fmap_g = net_d(y, y_hat)
if net_dur_disc is not None:
y_dur_hat_r, y_dur_hat_g = net_dur_disc(hidden_x, x_mask, logw, logw_)
with autocast(enabled=hps.train.bf16_run, dtype=torch.bfloat16):
loss_dur = torch.sum(l_length.float())
loss_mel = F.l1_loss(y_mel, y_hat_mel) * hps.train.c_mel
loss_kl = kl_loss(z_p, logs_q, m_p, logs_p, z_mask) * hps.train.c_kl
loss_fm = feature_loss(fmap_r, fmap_g)
loss_gen, losses_gen = generator_loss(y_d_hat_g)
loss_gen_all = loss_gen + loss_fm + loss_mel + loss_dur + loss_kl
if net_dur_disc is not None:
loss_dur_gen, losses_dur_gen = generator_loss(y_dur_hat_g)
loss_gen_all += loss_dur_gen
optim_g.zero_grad()
scaler.scale(loss_gen_all).backward()
scaler.unscale_(optim_g)
if getattr(hps.train, "bf16_run", False):
torch.nn.utils.clip_grad_norm_(parameters=net_g.parameters(), max_norm=500)
grad_norm_g = commons.clip_grad_value_(net_g.parameters(), None)
scaler.step(optim_g)
scaler.update()
if rank == 0:
if global_step % hps.train.log_interval == 0 and not hps.speedup:
lr = optim_g.param_groups[0]["lr"]
losses = [loss_disc, loss_gen, loss_fm, loss_mel, loss_dur, loss_kl]
# logger.info(
# "Train Epoch: {} [{:.0f}%]".format(
# epoch, 100.0 * batch_idx / len(train_loader)
# )
# )
# logger.info([x.item() for x in losses] + [global_step, lr])
scalar_dict = {
"loss/g/total": loss_gen_all,
"loss/d/total": loss_disc_all,
"learning_rate": lr,
"grad_norm_d": grad_norm_d,
"grad_norm_g": grad_norm_g,
}
scalar_dict.update(
{
"loss/g/fm": loss_fm,
"loss/g/mel": loss_mel,
"loss/g/dur": loss_dur,
"loss/g/kl": loss_kl,
}
)
scalar_dict.update(
{"loss/g/{}".format(i): v for i, v in enumerate(losses_gen)}
)
scalar_dict.update(
{"loss/d_r/{}".format(i): v for i, v in enumerate(losses_disc_r)}
)
scalar_dict.update(
{"loss/d_g/{}".format(i): v for i, v in enumerate(losses_disc_g)}
)
image_dict = {
"slice/mel_org": utils.plot_spectrogram_to_numpy(
y_mel[0].data.cpu().numpy()
),
"slice/mel_gen": utils.plot_spectrogram_to_numpy(
y_hat_mel[0].data.cpu().numpy()
),
"all/mel": utils.plot_spectrogram_to_numpy(
mel[0].data.cpu().numpy()
),
"all/attn": utils.plot_alignment_to_numpy(
attn[0, 0].data.cpu().numpy()
),
}
utils.summarize(
writer=writer,
global_step=global_step,
images=image_dict,
scalars=scalar_dict,
)
if (
global_step % hps.train.eval_interval == 0
and global_step != 0
and initial_step != global_step
):
if not hps.speedup:
evaluate(hps, net_g, eval_loader, writer_eval)
utils.save_checkpoint(
net_g,
optim_g,
hps.train.learning_rate,
epoch,
os.path.join(hps.model_dir, "G_{}.pth".format(global_step)),
)
utils.save_checkpoint(
net_d,
optim_d,
hps.train.learning_rate,
epoch,
os.path.join(hps.model_dir, "D_{}.pth".format(global_step)),
)
if net_dur_disc is not None:
utils.save_checkpoint(
net_dur_disc,
optim_dur_disc,
hps.train.learning_rate,
epoch,
os.path.join(hps.model_dir, "DUR_{}.pth".format(global_step)),
)
keep_ckpts = config.train_ms_config.keep_ckpts
if keep_ckpts > 0:
utils.clean_checkpoints(
path_to_models=hps.model_dir,
n_ckpts_to_keep=keep_ckpts,
sort_by_time=True,
)
# Save safetensors (for inference) to `model_assets/{model_name}`
utils.save_safetensors(
net_g,
epoch,
os.path.join(
config.out_dir,
f"{config.model_name}_e{epoch}_s{global_step}.safetensors",
),
for_infer=True,
)
global_step += 1
if pbar is not None:
pbar.set_description(
"Epoch {}({:.0f}%)/{}".format(
epoch, 100.0 * batch_idx / len(train_loader), hps.train.epochs
)
)
pbar.update()
# 本家ではこれをスピードアップのために消すと書かれていたので、一応消してみる
# と思ったけどメモリ使用量が減るかもしれないのでつけてみる
gc.collect()
torch.cuda.empty_cache()
if pbar is None and rank == 0:
logger.info(f"====> Epoch: {epoch}, step: {global_step}")
def evaluate(hps, generator, eval_loader, writer_eval):
generator.eval()
image_dict = {}
audio_dict = {}
logger.info("Evaluating ...")
with torch.no_grad():
for batch_idx, (
x,
x_lengths,
spec,
spec_lengths,
y,
y_lengths,
speakers,
tone,
language,
bert,
ja_bert,
en_bert,
style_vec,
) in enumerate(eval_loader):
x, x_lengths = x.cuda(), x_lengths.cuda()
spec, spec_lengths = spec.cuda(), spec_lengths.cuda()
y, y_lengths = y.cuda(), y_lengths.cuda()
speakers = speakers.cuda()
bert = bert.cuda()
ja_bert = ja_bert.cuda()
en_bert = en_bert.cuda()
tone = tone.cuda()
language = language.cuda()
style_vec = style_vec.cuda()
for use_sdp in [True, False]:
y_hat, attn, mask, *_ = generator.module.infer(
x,
x_lengths,
speakers,
tone,
language,
bert,
ja_bert,
en_bert,
style_vec,
y=spec,
max_len=1000,
sdp_ratio=0.0 if not use_sdp else 1.0,
)
y_hat_lengths = mask.sum([1, 2]).long() * hps.data.hop_length
mel = spec_to_mel_torch(
spec,
hps.data.filter_length,
hps.data.n_mel_channels,
hps.data.sampling_rate,
hps.data.mel_fmin,
hps.data.mel_fmax,
)
y_hat_mel = mel_spectrogram_torch(
y_hat.squeeze(1).float(),
hps.data.filter_length,
hps.data.n_mel_channels,
hps.data.sampling_rate,
hps.data.hop_length,
hps.data.win_length,
hps.data.mel_fmin,
hps.data.mel_fmax,
)
image_dict.update(
{
f"gen/mel_{batch_idx}": utils.plot_spectrogram_to_numpy(
y_hat_mel[0].cpu().numpy()
)
}
)
audio_dict.update(
{
f"gen/audio_{batch_idx}_{use_sdp}": y_hat[
0, :, : y_hat_lengths[0]
]
}
)
image_dict.update(
{
f"gt/mel_{batch_idx}": utils.plot_spectrogram_to_numpy(
mel[0].cpu().numpy()
)
}
)
audio_dict.update({f"gt/audio_{batch_idx}": y[0, :, : y_lengths[0]]})
utils.summarize(
writer=writer_eval,
global_step=global_step,
images=image_dict,
audios=audio_dict,
audio_sampling_rate=hps.data.sampling_rate,
)
generator.train()
if __name__ == "__main__":
run()