Spaces:
Running
Running
import argparse | |
import datetime | |
import gc | |
import os | |
import platform | |
import torch | |
import torch.distributed as dist | |
from torch.cuda.amp import GradScaler, autocast | |
from torch.nn import functional as F | |
from torch.nn.parallel import DistributedDataParallel as DDP | |
from torch.utils.data import DataLoader | |
from torch.utils.tensorboard import SummaryWriter | |
from tqdm import tqdm | |
# logging.getLogger("numba").setLevel(logging.WARNING) | |
import commons | |
import default_style | |
import utils | |
from common.log import logger | |
from common.stdout_wrapper import SAFE_STDOUT | |
from config import config | |
from data_utils import ( | |
DistributedBucketSampler, | |
TextAudioSpeakerCollate, | |
TextAudioSpeakerLoader, | |
) | |
from losses import WavLMLoss, discriminator_loss, feature_loss, generator_loss, kl_loss | |
from mel_processing import mel_spectrogram_torch, spec_to_mel_torch | |
from models_jp_extra import ( | |
DurationDiscriminator, | |
MultiPeriodDiscriminator, | |
SynthesizerTrn, | |
WavLMDiscriminator, | |
) | |
from text.symbols import symbols | |
torch.backends.cuda.matmul.allow_tf32 = True | |
torch.backends.cudnn.allow_tf32 = ( | |
True # If encontered training problem,please try to disable TF32. | |
) | |
torch.set_num_threads(1) | |
torch.set_float32_matmul_precision("medium") | |
torch.backends.cuda.sdp_kernel("flash") | |
torch.backends.cuda.enable_flash_sdp(True) | |
torch.backends.cuda.enable_mem_efficient_sdp( | |
True | |
) # Not available if torch version is lower than 2.0 | |
global_step = 0 | |
def run(): | |
# Command line configuration is not recommended unless necessary, use config.yml | |
parser = argparse.ArgumentParser() | |
parser.add_argument( | |
"-c", | |
"--config", | |
type=str, | |
default=config.train_ms_config.config_path, | |
help="JSON file for configuration", | |
) | |
parser.add_argument( | |
"-m", | |
"--model", | |
type=str, | |
help="数据集文件夹路径,请注意,数据不再默认放在/logs文件夹下。如果需要用命令行配置,请声明相对于根目录的路径", | |
default=config.dataset_path, | |
) | |
parser.add_argument( | |
"--assets_root", | |
type=str, | |
help="Root directory of model assets needed for inference.", | |
default=config.assets_root, | |
) | |
parser.add_argument( | |
"--skip_default_style", | |
action="store_true", | |
help="Skip saving default style config and mean vector.", | |
) | |
parser.add_argument( | |
"--no_progress_bar", | |
action="store_true", | |
help="Do not show the progress bar while training.", | |
) | |
parser.add_argument( | |
"--speedup", | |
action="store_true", | |
help="Speed up training by disabling logging and evaluation.", | |
) | |
args = parser.parse_args() | |
# Set log file | |
model_dir = os.path.join(args.model, config.train_ms_config.model_dir) | |
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S") | |
logger.add(os.path.join(args.model, f"train_{timestamp}.log")) | |
# Parsing environment variables | |
envs = config.train_ms_config.env | |
for env_name, env_value in envs.items(): | |
if env_name not in os.environ.keys(): | |
logger.info("Loading configuration from config {}".format(str(env_value))) | |
os.environ[env_name] = str(env_value) | |
logger.info( | |
"Loading environment variables \nMASTER_ADDR: {},\nMASTER_PORT: {},\nWORLD_SIZE: {},\nRANK: {},\nLOCAL_RANK: {}".format( | |
os.environ["MASTER_ADDR"], | |
os.environ["MASTER_PORT"], | |
os.environ["WORLD_SIZE"], | |
os.environ["RANK"], | |
os.environ["LOCAL_RANK"], | |
) | |
) | |
backend = "nccl" | |
if platform.system() == "Windows": | |
backend = "gloo" # If Windows,switch to gloo backend. | |
dist.init_process_group( | |
backend=backend, | |
init_method="env://", | |
timeout=datetime.timedelta(seconds=300), | |
) # Use torchrun instead of mp.spawn | |
rank = dist.get_rank() | |
local_rank = int(os.environ["LOCAL_RANK"]) | |
n_gpus = dist.get_world_size() | |
hps = utils.get_hparams_from_file(args.config) | |
# This is needed because we have to pass values to `train_and_evaluate() | |
hps.model_dir = model_dir | |
hps.speedup = args.speedup | |
# 比较路径是否相同 | |
if os.path.realpath(args.config) != os.path.realpath( | |
config.train_ms_config.config_path | |
): | |
with open(args.config, "r", encoding="utf-8") as f: | |
data = f.read() | |
os.makedirs(os.path.dirname(config.train_ms_config.config_path), exist_ok=True) | |
with open(config.train_ms_config.config_path, "w", encoding="utf-8") as f: | |
f.write(data) | |
""" | |
Path constants are a bit complicated... | |
TODO: Refactor or rename these? | |
(Both `config.yml` and `config.json` are used, which is confusing I think.) | |
args.model: For saving all info needed for training. | |
default: `Data/{model_name}`. | |
hps.model_dir := model_dir: For saving checkpoints (for resuming training). | |
default: `Data/{model_name}/models`. | |
(Use `hps` since we have to pass `model_dir` to `train_and_evaluate()`. | |
args.assets_root: The root directory of model assets needed for inference. | |
default: config.assets_root == `model_assets`. | |
config.out_dir: The directory for model assets of this model (for inference). | |
default: `model_assets/{model_name}`. | |
""" | |
os.makedirs(config.out_dir, exist_ok=True) | |
if not args.skip_default_style: | |
# Save default style to out_dir | |
default_style.set_style_config( | |
args.config, os.path.join(config.out_dir, "config.json") | |
) | |
default_style.save_mean_vector( | |
os.path.join(args.model, "wavs"), | |
os.path.join(config.out_dir, "style_vectors.npy"), | |
) | |
torch.manual_seed(hps.train.seed) | |
torch.cuda.set_device(local_rank) | |
global global_step | |
writer = None | |
writer_eval = None | |
if rank == 0 and not args.speedup: | |
# logger = utils.get_logger(hps.model_dir) | |
# logger.info(hps) | |
utils.check_git_hash(model_dir) | |
writer = SummaryWriter(log_dir=model_dir) | |
writer_eval = SummaryWriter(log_dir=os.path.join(model_dir, "eval")) | |
train_dataset = TextAudioSpeakerLoader(hps.data.training_files, hps.data) | |
train_sampler = DistributedBucketSampler( | |
train_dataset, | |
hps.train.batch_size, | |
[32, 300, 400, 500, 600, 700, 800, 900, 1000], | |
num_replicas=n_gpus, | |
rank=rank, | |
shuffle=True, | |
) | |
collate_fn = TextAudioSpeakerCollate(use_jp_extra=True) | |
train_loader = DataLoader( | |
train_dataset, | |
# メモリ消費量を減らそうとnum_workersを1にしてみる | |
# num_workers=min(config.train_ms_config.num_workers, os.cpu_count() // 2), | |
num_workers=1, | |
shuffle=False, | |
pin_memory=True, | |
collate_fn=collate_fn, | |
batch_sampler=train_sampler, | |
persistent_workers=True, | |
# これもメモリ消費量を減らそうとしてコメントアウト | |
# prefetch_factor=6, | |
) # DataLoader config could be adjusted. | |
eval_dataset = None | |
eval_loader = None | |
if rank == 0 and not args.speedup: | |
eval_dataset = TextAudioSpeakerLoader(hps.data.validation_files, hps.data) | |
eval_loader = DataLoader( | |
eval_dataset, | |
num_workers=0, | |
shuffle=False, | |
batch_size=1, | |
pin_memory=True, | |
drop_last=False, | |
collate_fn=collate_fn, | |
) | |
if ( | |
"use_noise_scaled_mas" in hps.model.keys() | |
and hps.model.use_noise_scaled_mas is True | |
): | |
logger.info("Using noise scaled MAS for VITS2") | |
mas_noise_scale_initial = 0.01 | |
noise_scale_delta = 2e-6 | |
else: | |
logger.info("Using normal MAS for VITS1") | |
mas_noise_scale_initial = 0.0 | |
noise_scale_delta = 0.0 | |
if ( | |
"use_duration_discriminator" in hps.model.keys() | |
and hps.model.use_duration_discriminator is True | |
): | |
logger.info("Using duration discriminator for VITS2") | |
net_dur_disc = DurationDiscriminator( | |
hps.model.hidden_channels, | |
hps.model.hidden_channels, | |
3, | |
0.1, | |
gin_channels=hps.model.gin_channels if hps.data.n_speakers != 0 else 0, | |
).cuda(local_rank) | |
else: | |
net_dur_disc = None | |
if ( | |
"use_wavlm_discriminator" in hps.model.keys() | |
and hps.model.use_wavlm_discriminator is True | |
): | |
net_wd = WavLMDiscriminator( | |
hps.model.slm.hidden, hps.model.slm.nlayers, hps.model.slm.initial_channel | |
).cuda(local_rank) | |
else: | |
net_wd = None | |
if ( | |
"use_spk_conditioned_encoder" in hps.model.keys() | |
and hps.model.use_spk_conditioned_encoder is True | |
): | |
if hps.data.n_speakers == 0: | |
raise ValueError( | |
"n_speakers must be > 0 when using spk conditioned encoder to train multi-speaker model" | |
) | |
else: | |
logger.info("Using normal encoder for VITS1") | |
net_g = SynthesizerTrn( | |
len(symbols), | |
hps.data.filter_length // 2 + 1, | |
hps.train.segment_size // hps.data.hop_length, | |
n_speakers=hps.data.n_speakers, | |
mas_noise_scale_initial=mas_noise_scale_initial, | |
noise_scale_delta=noise_scale_delta, | |
**hps.model, | |
).cuda(local_rank) | |
if getattr(hps.train, "freeze_JP_bert", False): | |
logger.info("Freezing (JP) bert encoder !!!") | |
for param in net_g.enc_p.bert_proj.parameters(): | |
param.requires_grad = False | |
if getattr(hps.train, "freeze_style", False): | |
logger.info("Freezing style encoder !!!") | |
for param in net_g.enc_p.style_proj.parameters(): | |
param.requires_grad = False | |
net_d = MultiPeriodDiscriminator(hps.model.use_spectral_norm).cuda(local_rank) | |
optim_g = torch.optim.AdamW( | |
filter(lambda p: p.requires_grad, net_g.parameters()), | |
hps.train.learning_rate, | |
betas=hps.train.betas, | |
eps=hps.train.eps, | |
) | |
optim_d = torch.optim.AdamW( | |
net_d.parameters(), | |
hps.train.learning_rate, | |
betas=hps.train.betas, | |
eps=hps.train.eps, | |
) | |
if net_dur_disc is not None: | |
optim_dur_disc = torch.optim.AdamW( | |
net_dur_disc.parameters(), | |
hps.train.learning_rate, | |
betas=hps.train.betas, | |
eps=hps.train.eps, | |
) | |
else: | |
optim_dur_disc = None | |
if net_wd is not None: | |
optim_wd = torch.optim.AdamW( | |
net_wd.parameters(), | |
hps.train.learning_rate, | |
betas=hps.train.betas, | |
eps=hps.train.eps, | |
) | |
else: | |
optim_wd = None | |
net_g = DDP( | |
net_g, | |
device_ids=[local_rank], | |
# bucket_cap_mb=512 | |
) | |
net_d = DDP( | |
net_d, | |
device_ids=[local_rank], | |
# bucket_cap_mb=512 | |
) | |
if net_dur_disc is not None: | |
net_dur_disc = DDP( | |
net_dur_disc, | |
device_ids=[local_rank], | |
# bucket_cap_mb=512, | |
) | |
if net_wd is not None: | |
net_wd = DDP( | |
net_wd, | |
device_ids=[local_rank], | |
# bucket_cap_mb=512 | |
) | |
if utils.is_resuming(model_dir): | |
if net_dur_disc is not None: | |
try: | |
_, _, dur_resume_lr, epoch_str = utils.load_checkpoint( | |
utils.latest_checkpoint_path(model_dir, "DUR_*.pth"), | |
net_dur_disc, | |
optim_dur_disc, | |
skip_optimizer=( | |
hps.train.skip_optimizer | |
if "skip_optimizer" in hps.train | |
else True | |
), | |
) | |
if not optim_dur_disc.param_groups[0].get("initial_lr"): | |
optim_dur_disc.param_groups[0]["initial_lr"] = dur_resume_lr | |
except: | |
if not optim_dur_disc.param_groups[0].get("initial_lr"): | |
optim_dur_disc.param_groups[0]["initial_lr"] = dur_resume_lr | |
print("Initialize dur_disc") | |
if net_wd is not None: | |
try: | |
_, optim_wd, wd_resume_lr, epoch_str = utils.load_checkpoint( | |
utils.latest_checkpoint_path(model_dir, "WD_*.pth"), | |
net_wd, | |
optim_wd, | |
skip_optimizer=( | |
hps.train.skip_optimizer | |
if "skip_optimizer" in hps.train | |
else True | |
), | |
) | |
if not optim_wd.param_groups[0].get("initial_lr"): | |
optim_wd.param_groups[0]["initial_lr"] = wd_resume_lr | |
except: | |
if not optim_wd.param_groups[0].get("initial_lr"): | |
optim_wd.param_groups[0]["initial_lr"] = wd_resume_lr | |
logger.info("Initialize wavlm") | |
try: | |
_, optim_g, g_resume_lr, epoch_str = utils.load_checkpoint( | |
utils.latest_checkpoint_path(model_dir, "G_*.pth"), | |
net_g, | |
optim_g, | |
skip_optimizer=( | |
hps.train.skip_optimizer if "skip_optimizer" in hps.train else True | |
), | |
) | |
_, optim_d, d_resume_lr, epoch_str = utils.load_checkpoint( | |
utils.latest_checkpoint_path(model_dir, "D_*.pth"), | |
net_d, | |
optim_d, | |
skip_optimizer=( | |
hps.train.skip_optimizer if "skip_optimizer" in hps.train else True | |
), | |
) | |
if not optim_g.param_groups[0].get("initial_lr"): | |
optim_g.param_groups[0]["initial_lr"] = g_resume_lr | |
if not optim_d.param_groups[0].get("initial_lr"): | |
optim_d.param_groups[0]["initial_lr"] = d_resume_lr | |
epoch_str = max(epoch_str, 1) | |
# global_step = (epoch_str - 1) * len(train_loader) | |
global_step = int( | |
utils.get_steps(utils.latest_checkpoint_path(model_dir, "G_*.pth")) | |
) | |
logger.info( | |
f"******************Found the model. Current epoch is {epoch_str}, gloabl step is {global_step}*********************" | |
) | |
except Exception as e: | |
logger.warning(e) | |
logger.warning( | |
"It seems that you are not using the pretrained models, so we will train from scratch." | |
) | |
epoch_str = 1 | |
global_step = 0 | |
else: | |
try: | |
_ = utils.load_safetensors( | |
os.path.join(model_dir, "G_0.safetensors"), net_g | |
) | |
_ = utils.load_safetensors( | |
os.path.join(model_dir, "D_0.safetensors"), net_d | |
) | |
if net_dur_disc is not None: | |
_ = utils.load_safetensors( | |
os.path.join(model_dir, "DUR_0.safetensors"), net_dur_disc | |
) | |
if net_wd is not None: | |
_ = utils.load_safetensors( | |
os.path.join(model_dir, "WD_0.safetensors"), net_wd | |
) | |
logger.info("Loaded the pretrained models.") | |
except Exception as e: | |
logger.warning(e) | |
logger.warning( | |
"It seems that you are not using the pretrained models, so we will train from scratch." | |
) | |
finally: | |
epoch_str = 1 | |
global_step = 0 | |
def lr_lambda(epoch): | |
""" | |
Learning rate scheduler for warmup and exponential decay. | |
- During the warmup period, the learning rate increases linearly. | |
- After the warmup period, the learning rate decreases exponentially. | |
""" | |
if epoch < hps.train.warmup_epochs: | |
return float(epoch) / float(max(1, hps.train.warmup_epochs)) | |
else: | |
return hps.train.lr_decay ** (epoch - hps.train.warmup_epochs) | |
scheduler_last_epoch = epoch_str - 2 | |
scheduler_g = torch.optim.lr_scheduler.LambdaLR( | |
optim_g, lr_lambda=lr_lambda, last_epoch=scheduler_last_epoch | |
) | |
scheduler_d = torch.optim.lr_scheduler.LambdaLR( | |
optim_d, lr_lambda=lr_lambda, last_epoch=scheduler_last_epoch | |
) | |
if net_dur_disc is not None: | |
scheduler_dur_disc = torch.optim.lr_scheduler.LambdaLR( | |
optim_dur_disc, lr_lambda=lr_lambda, last_epoch=scheduler_last_epoch | |
) | |
else: | |
scheduler_dur_disc = None | |
if net_wd is not None: | |
scheduler_wd = torch.optim.lr_scheduler.LambdaLR( | |
optim_wd, lr_lambda=lr_lambda, last_epoch=scheduler_last_epoch | |
) | |
wl = WavLMLoss( | |
hps.model.slm.model, | |
net_wd, | |
hps.data.sampling_rate, | |
hps.model.slm.sr, | |
).to(local_rank) | |
else: | |
scheduler_wd = None | |
wl = None | |
scaler = GradScaler(enabled=hps.train.bf16_run) | |
logger.info("Start training.") | |
diff = abs( | |
epoch_str * len(train_loader) - (hps.train.epochs + 1) * len(train_loader) | |
) | |
pbar = None | |
if not args.no_progress_bar: | |
pbar = tqdm( | |
total=global_step + diff, | |
initial=global_step, | |
smoothing=0.05, | |
file=SAFE_STDOUT, | |
) | |
initial_step = global_step | |
for epoch in range(epoch_str, hps.train.epochs + 1): | |
if rank == 0: | |
train_and_evaluate( | |
rank, | |
local_rank, | |
epoch, | |
hps, | |
[net_g, net_d, net_dur_disc, net_wd, wl], | |
[optim_g, optim_d, optim_dur_disc, optim_wd], | |
[scheduler_g, scheduler_d, scheduler_dur_disc, scheduler_wd], | |
scaler, | |
[train_loader, eval_loader], | |
logger, | |
[writer, writer_eval], | |
pbar, | |
initial_step, | |
) | |
else: | |
train_and_evaluate( | |
rank, | |
local_rank, | |
epoch, | |
hps, | |
[net_g, net_d, net_dur_disc, net_wd, wl], | |
[optim_g, optim_d, optim_dur_disc, optim_wd], | |
[scheduler_g, scheduler_d, scheduler_dur_disc, scheduler_wd], | |
scaler, | |
[train_loader, None], | |
None, | |
None, | |
pbar, | |
initial_step, | |
) | |
scheduler_g.step() | |
scheduler_d.step() | |
if net_dur_disc is not None: | |
scheduler_dur_disc.step() | |
if net_wd is not None: | |
scheduler_wd.step() | |
if epoch == hps.train.epochs: | |
# Save the final models | |
utils.save_checkpoint( | |
net_g, | |
optim_g, | |
hps.train.learning_rate, | |
epoch, | |
os.path.join(model_dir, "G_{}.pth".format(global_step)), | |
) | |
utils.save_checkpoint( | |
net_d, | |
optim_d, | |
hps.train.learning_rate, | |
epoch, | |
os.path.join(model_dir, "D_{}.pth".format(global_step)), | |
) | |
if net_dur_disc is not None: | |
utils.save_checkpoint( | |
net_dur_disc, | |
optim_dur_disc, | |
hps.train.learning_rate, | |
epoch, | |
os.path.join(model_dir, "DUR_{}.pth".format(global_step)), | |
) | |
if net_wd is not None: | |
utils.save_checkpoint( | |
net_wd, | |
optim_wd, | |
hps.train.learning_rate, | |
epoch, | |
os.path.join(model_dir, "WD_{}.pth".format(global_step)), | |
) | |
utils.save_safetensors( | |
net_g, | |
epoch, | |
os.path.join( | |
config.out_dir, | |
f"{config.model_name}_e{epoch}_s{global_step}.safetensors", | |
), | |
for_infer=True, | |
) | |
if pbar is not None: | |
pbar.close() | |
def train_and_evaluate( | |
rank, | |
local_rank, | |
epoch, | |
hps, | |
nets, | |
optims, | |
schedulers, | |
scaler, | |
loaders, | |
logger, | |
writers, | |
pbar: tqdm, | |
initial_step: int, | |
): | |
net_g, net_d, net_dur_disc, net_wd, wl = nets | |
optim_g, optim_d, optim_dur_disc, optim_wd = optims | |
scheduler_g, scheduler_d, scheduler_dur_disc, scheduler_wd = schedulers | |
train_loader, eval_loader = loaders | |
if writers is not None: | |
writer, writer_eval = writers | |
train_loader.batch_sampler.set_epoch(epoch) | |
global global_step | |
net_g.train() | |
net_d.train() | |
if net_dur_disc is not None: | |
net_dur_disc.train() | |
if net_wd is not None: | |
net_wd.train() | |
for batch_idx, ( | |
x, | |
x_lengths, | |
spec, | |
spec_lengths, | |
y, | |
y_lengths, | |
speakers, | |
tone, | |
language, | |
bert, | |
style_vec, | |
) in enumerate(train_loader): | |
if net_g.module.use_noise_scaled_mas: | |
current_mas_noise_scale = ( | |
net_g.module.mas_noise_scale_initial | |
- net_g.module.noise_scale_delta * global_step | |
) | |
net_g.module.current_mas_noise_scale = max(current_mas_noise_scale, 0.0) | |
x, x_lengths = x.cuda(local_rank, non_blocking=True), x_lengths.cuda( | |
local_rank, non_blocking=True | |
) | |
spec, spec_lengths = spec.cuda( | |
local_rank, non_blocking=True | |
), spec_lengths.cuda(local_rank, non_blocking=True) | |
y, y_lengths = y.cuda(local_rank, non_blocking=True), y_lengths.cuda( | |
local_rank, non_blocking=True | |
) | |
speakers = speakers.cuda(local_rank, non_blocking=True) | |
tone = tone.cuda(local_rank, non_blocking=True) | |
language = language.cuda(local_rank, non_blocking=True) | |
bert = bert.cuda(local_rank, non_blocking=True) | |
style_vec = style_vec.cuda(local_rank, non_blocking=True) | |
with autocast(enabled=hps.train.bf16_run, dtype=torch.bfloat16): | |
( | |
y_hat, | |
l_length, | |
attn, | |
ids_slice, | |
x_mask, | |
z_mask, | |
(z, z_p, m_p, logs_p, m_q, logs_q), | |
(hidden_x, logw, logw_), # , logw_sdp), | |
g, | |
) = net_g( | |
x, | |
x_lengths, | |
spec, | |
spec_lengths, | |
speakers, | |
tone, | |
language, | |
bert, | |
style_vec, | |
) | |
mel = spec_to_mel_torch( | |
spec, | |
hps.data.filter_length, | |
hps.data.n_mel_channels, | |
hps.data.sampling_rate, | |
hps.data.mel_fmin, | |
hps.data.mel_fmax, | |
) | |
y_mel = commons.slice_segments( | |
mel, ids_slice, hps.train.segment_size // hps.data.hop_length | |
) | |
y_hat_mel = mel_spectrogram_torch( | |
y_hat.squeeze(1).float(), | |
hps.data.filter_length, | |
hps.data.n_mel_channels, | |
hps.data.sampling_rate, | |
hps.data.hop_length, | |
hps.data.win_length, | |
hps.data.mel_fmin, | |
hps.data.mel_fmax, | |
) | |
y = commons.slice_segments( | |
y, ids_slice * hps.data.hop_length, hps.train.segment_size | |
) # slice | |
# Discriminator | |
y_d_hat_r, y_d_hat_g, _, _ = net_d(y, y_hat.detach()) | |
with autocast(enabled=hps.train.bf16_run, dtype=torch.bfloat16): | |
loss_disc, losses_disc_r, losses_disc_g = discriminator_loss( | |
y_d_hat_r, y_d_hat_g | |
) | |
loss_disc_all = loss_disc | |
if net_dur_disc is not None: | |
y_dur_hat_r, y_dur_hat_g = net_dur_disc( | |
hidden_x.detach(), | |
x_mask.detach(), | |
logw_.detach(), | |
logw.detach(), | |
g.detach(), | |
) | |
with autocast(enabled=hps.train.bf16_run, dtype=torch.bfloat16): | |
# TODO: I think need to mean using the mask, but for now, just mean all | |
( | |
loss_dur_disc, | |
losses_dur_disc_r, | |
losses_dur_disc_g, | |
) = discriminator_loss(y_dur_hat_r, y_dur_hat_g) | |
loss_dur_disc_all = loss_dur_disc | |
optim_dur_disc.zero_grad() | |
scaler.scale(loss_dur_disc_all).backward() | |
scaler.unscale_(optim_dur_disc) | |
# torch.nn.utils.clip_grad_norm_( | |
# parameters=net_dur_disc.parameters(), max_norm=5 | |
# ) | |
grad_norm_dur = commons.clip_grad_value_( | |
net_dur_disc.parameters(), None | |
) | |
scaler.step(optim_dur_disc) | |
if net_wd is not None: | |
# logger.debug(f"y.shape: {y.shape}, y_hat.shape: {y_hat.shape}") | |
# shape: (batch, 1, time) | |
with autocast(enabled=hps.train.bf16_run, dtype=torch.bfloat16): | |
loss_slm = wl.discriminator( | |
y.detach().squeeze(1), y_hat.detach().squeeze(1) | |
).mean() | |
optim_wd.zero_grad() | |
scaler.scale(loss_slm).backward() | |
scaler.unscale_(optim_wd) | |
# torch.nn.utils.clip_grad_norm_(parameters=net_wd.parameters(), max_norm=200) | |
grad_norm_wd = commons.clip_grad_value_(net_wd.parameters(), None) | |
scaler.step(optim_wd) | |
optim_d.zero_grad() | |
scaler.scale(loss_disc_all).backward() | |
scaler.unscale_(optim_d) | |
if getattr(hps.train, "bf16_run", False): | |
torch.nn.utils.clip_grad_norm_(parameters=net_d.parameters(), max_norm=200) | |
grad_norm_d = commons.clip_grad_value_(net_d.parameters(), None) | |
scaler.step(optim_d) | |
with autocast(enabled=hps.train.bf16_run, dtype=torch.bfloat16): | |
# Generator | |
y_d_hat_r, y_d_hat_g, fmap_r, fmap_g = net_d(y, y_hat) | |
if net_dur_disc is not None: | |
_, y_dur_hat_g = net_dur_disc(hidden_x, x_mask, logw_, logw, g) | |
if net_wd is not None: | |
loss_lm = wl(y.detach().squeeze(1), y_hat.squeeze(1)).mean() | |
loss_lm_gen = wl.generator(y_hat.squeeze(1)) | |
with autocast(enabled=hps.train.bf16_run, dtype=torch.bfloat16): | |
loss_dur = torch.sum(l_length.float()) | |
loss_mel = F.l1_loss(y_mel, y_hat_mel) * hps.train.c_mel | |
loss_kl = kl_loss(z_p, logs_q, m_p, logs_p, z_mask) * hps.train.c_kl | |
loss_fm = feature_loss(fmap_r, fmap_g) | |
loss_gen, losses_gen = generator_loss(y_d_hat_g) | |
# loss_commit = loss_commit * hps.train.c_commit | |
loss_gen_all = loss_gen + loss_fm + loss_mel + loss_dur + loss_kl | |
if net_dur_disc is not None: | |
loss_dur_gen, losses_dur_gen = generator_loss(y_dur_hat_g) | |
if net_wd is not None: | |
loss_gen_all += loss_dur_gen + loss_lm + loss_lm_gen | |
else: | |
loss_gen_all += loss_dur_gen | |
optim_g.zero_grad() | |
scaler.scale(loss_gen_all).backward() | |
scaler.unscale_(optim_g) | |
# if getattr(hps.train, "bf16_run", False): | |
torch.nn.utils.clip_grad_norm_(parameters=net_g.parameters(), max_norm=500) | |
grad_norm_g = commons.clip_grad_value_(net_g.parameters(), None) | |
scaler.step(optim_g) | |
scaler.update() | |
if rank == 0: | |
if global_step % hps.train.log_interval == 0 and not hps.speedup: | |
lr = optim_g.param_groups[0]["lr"] | |
losses = [loss_disc, loss_gen, loss_fm, loss_mel, loss_dur, loss_kl] | |
# logger.info( | |
# "Train Epoch: {} [{:.0f}%]".format( | |
# epoch, 100.0 * batch_idx / len(train_loader) | |
# ) | |
# ) | |
# logger.info([x.item() for x in losses] + [global_step, lr]) | |
scalar_dict = { | |
"loss/g/total": loss_gen_all, | |
"loss/d/total": loss_disc_all, | |
"learning_rate": lr, | |
"grad_norm_d": grad_norm_d, | |
"grad_norm_g": grad_norm_g, | |
} | |
scalar_dict.update( | |
{ | |
"loss/g/fm": loss_fm, | |
"loss/g/mel": loss_mel, | |
"loss/g/dur": loss_dur, | |
"loss/g/kl": loss_kl, | |
} | |
) | |
scalar_dict.update( | |
{"loss/g/{}".format(i): v for i, v in enumerate(losses_gen)} | |
) | |
scalar_dict.update( | |
{"loss/d_r/{}".format(i): v for i, v in enumerate(losses_disc_r)} | |
) | |
scalar_dict.update( | |
{"loss/d_g/{}".format(i): v for i, v in enumerate(losses_disc_g)} | |
) | |
if net_dur_disc is not None: | |
scalar_dict.update({"loss/dur_disc/total": loss_dur_disc_all}) | |
scalar_dict.update( | |
{ | |
"loss/dur_disc_g/{}".format(i): v | |
for i, v in enumerate(losses_dur_disc_g) | |
} | |
) | |
scalar_dict.update( | |
{ | |
"loss/dur_disc_r/{}".format(i): v | |
for i, v in enumerate(losses_dur_disc_r) | |
} | |
) | |
scalar_dict.update({"loss/g/dur_gen": loss_dur_gen}) | |
scalar_dict.update( | |
{ | |
"loss/g/dur_gen_{}".format(i): v | |
for i, v in enumerate(losses_dur_gen) | |
} | |
) | |
if net_wd is not None: | |
scalar_dict.update( | |
{ | |
"loss/wd/total": loss_slm, | |
"grad_norm_wd": grad_norm_wd, | |
"loss/g/lm": loss_lm, | |
"loss/g/lm_gen": loss_lm_gen, | |
} | |
) | |
image_dict = { | |
"slice/mel_org": utils.plot_spectrogram_to_numpy( | |
y_mel[0].data.cpu().numpy() | |
), | |
"slice/mel_gen": utils.plot_spectrogram_to_numpy( | |
y_hat_mel[0].data.cpu().numpy() | |
), | |
"all/mel": utils.plot_spectrogram_to_numpy( | |
mel[0].data.cpu().numpy() | |
), | |
"all/attn": utils.plot_alignment_to_numpy( | |
attn[0, 0].data.cpu().numpy() | |
), | |
} | |
utils.summarize( | |
writer=writer, | |
global_step=global_step, | |
images=image_dict, | |
scalars=scalar_dict, | |
) | |
if ( | |
global_step % hps.train.eval_interval == 0 | |
and global_step != 0 | |
and initial_step != global_step | |
): | |
if not hps.speedup: | |
evaluate(hps, net_g, eval_loader, writer_eval) | |
utils.save_checkpoint( | |
net_g, | |
optim_g, | |
hps.train.learning_rate, | |
epoch, | |
os.path.join(hps.model_dir, "G_{}.pth".format(global_step)), | |
) | |
utils.save_checkpoint( | |
net_d, | |
optim_d, | |
hps.train.learning_rate, | |
epoch, | |
os.path.join(hps.model_dir, "D_{}.pth".format(global_step)), | |
) | |
if net_dur_disc is not None: | |
utils.save_checkpoint( | |
net_dur_disc, | |
optim_dur_disc, | |
hps.train.learning_rate, | |
epoch, | |
os.path.join(hps.model_dir, "DUR_{}.pth".format(global_step)), | |
) | |
if net_wd is not None: | |
utils.save_checkpoint( | |
net_wd, | |
optim_wd, | |
hps.train.learning_rate, | |
epoch, | |
os.path.join(hps.model_dir, "WD_{}.pth".format(global_step)), | |
) | |
keep_ckpts = config.train_ms_config.keep_ckpts | |
if keep_ckpts > 0: | |
utils.clean_checkpoints( | |
path_to_models=hps.model_dir, | |
n_ckpts_to_keep=keep_ckpts, | |
sort_by_time=True, | |
) | |
# Save safetensors (for inference) to `model_assets/{model_name}` | |
utils.save_safetensors( | |
net_g, | |
epoch, | |
os.path.join( | |
config.out_dir, | |
f"{config.model_name}_e{epoch}_s{global_step}.safetensors", | |
), | |
for_infer=True, | |
) | |
global_step += 1 | |
if pbar is not None: | |
pbar.set_description( | |
"Epoch {}({:.0f}%)/{}".format( | |
epoch, 100.0 * batch_idx / len(train_loader), hps.train.epochs | |
) | |
) | |
pbar.update() | |
# 本家ではこれをスピードアップのために消すと書かれていたので、一応消してみる | |
# と思ったけどメモリ使用量が減るかもしれないのでつけてみる | |
gc.collect() | |
torch.cuda.empty_cache() | |
if pbar is None and rank == 0: | |
logger.info(f"====> Epoch: {epoch}, step: {global_step}") | |
def evaluate(hps, generator, eval_loader, writer_eval): | |
generator.eval() | |
image_dict = {} | |
audio_dict = {} | |
logger.info("Evaluating ...") | |
with torch.no_grad(): | |
for batch_idx, ( | |
x, | |
x_lengths, | |
spec, | |
spec_lengths, | |
y, | |
y_lengths, | |
speakers, | |
tone, | |
language, | |
bert, | |
style_vec, | |
) in enumerate(eval_loader): | |
x, x_lengths = x.cuda(), x_lengths.cuda() | |
spec, spec_lengths = spec.cuda(), spec_lengths.cuda() | |
y, y_lengths = y.cuda(), y_lengths.cuda() | |
speakers = speakers.cuda() | |
bert = bert.cuda() | |
tone = tone.cuda() | |
language = language.cuda() | |
style_vec = style_vec.cuda() | |
for use_sdp in [True, False]: | |
y_hat, attn, mask, *_ = generator.module.infer( | |
x, | |
x_lengths, | |
speakers, | |
tone, | |
language, | |
bert, | |
style_vec, | |
y=spec, | |
max_len=1000, | |
sdp_ratio=0.0 if not use_sdp else 1.0, | |
) | |
y_hat_lengths = mask.sum([1, 2]).long() * hps.data.hop_length | |
mel = spec_to_mel_torch( | |
spec, | |
hps.data.filter_length, | |
hps.data.n_mel_channels, | |
hps.data.sampling_rate, | |
hps.data.mel_fmin, | |
hps.data.mel_fmax, | |
) | |
y_hat_mel = mel_spectrogram_torch( | |
y_hat.squeeze(1).float(), | |
hps.data.filter_length, | |
hps.data.n_mel_channels, | |
hps.data.sampling_rate, | |
hps.data.hop_length, | |
hps.data.win_length, | |
hps.data.mel_fmin, | |
hps.data.mel_fmax, | |
) | |
image_dict.update( | |
{ | |
f"gen/mel_{batch_idx}": utils.plot_spectrogram_to_numpy( | |
y_hat_mel[0].cpu().numpy() | |
) | |
} | |
) | |
audio_dict.update( | |
{ | |
f"gen/audio_{batch_idx}_{use_sdp}": y_hat[ | |
0, :, : y_hat_lengths[0] | |
] | |
} | |
) | |
image_dict.update( | |
{ | |
f"gt/mel_{batch_idx}": utils.plot_spectrogram_to_numpy( | |
mel[0].cpu().numpy() | |
) | |
} | |
) | |
audio_dict.update({f"gt/audio_{batch_idx}": y[0, :, : y_lengths[0]]}) | |
utils.summarize( | |
writer=writer_eval, | |
global_step=global_step, | |
images=image_dict, | |
audios=audio_dict, | |
audio_sampling_rate=hps.data.sampling_rate, | |
) | |
generator.train() | |
if __name__ == "__main__": | |
run() | |