File size: 9,987 Bytes
3f200e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
"""
@Desc: 全局配置文件读取
"""

import os
import shutil
from typing import Dict, List

import torch
import yaml

from common.log import logger

# If not cuda available, set possible devices to cpu
cuda_available = torch.cuda.is_available()


class Resample_config:
    """重采样配置"""

    def __init__(self, in_dir: str, out_dir: str, sampling_rate: int = 44100):
        self.sampling_rate: int = sampling_rate  # 目标采样率
        self.in_dir: str = in_dir  # 待处理音频目录路径
        self.out_dir: str = out_dir  # 重采样输出路径

    @classmethod
    def from_dict(cls, dataset_path: str, data: Dict[str, any]):
        """从字典中生成实例"""

        # 不检查路径是否有效,此逻辑在resample.py中处理
        data["in_dir"] = os.path.join(dataset_path, data["in_dir"])
        data["out_dir"] = os.path.join(dataset_path, data["out_dir"])

        return cls(**data)


class Preprocess_text_config:
    """数据预处理配置"""

    def __init__(
        self,
        transcription_path: str,
        cleaned_path: str,
        train_path: str,
        val_path: str,
        config_path: str,
        val_per_lang: int = 5,
        max_val_total: int = 10000,
        clean: bool = True,
    ):
        self.transcription_path: str = (
            transcription_path  # 原始文本文件路径,文本格式应为{wav_path}|{speaker_name}|{language}|{text}。
        )
        self.cleaned_path: str = (
            cleaned_path  # 数据清洗后文本路径,可以不填。不填则将在原始文本目录生成
        )
        self.train_path: str = (
            train_path  # 训练集路径,可以不填。不填则将在原始文本目录生成
        )
        self.val_path: str = (
            val_path  # 验证集路径,可以不填。不填则将在原始文本目录生成
        )
        self.config_path: str = config_path  # 配置文件路径
        self.val_per_lang: int = val_per_lang  # 每个speaker的验证集条数
        self.max_val_total: int = (
            max_val_total  # 验证集最大条数,多于的会被截断并放到训练集中
        )
        self.clean: bool = clean  # 是否进行数据清洗

    @classmethod
    def from_dict(cls, dataset_path: str, data: Dict[str, any]):
        """从字典中生成实例"""

        data["transcription_path"] = os.path.join(
            dataset_path, data["transcription_path"]
        )
        if data["cleaned_path"] == "" or data["cleaned_path"] is None:
            data["cleaned_path"] = None
        else:
            data["cleaned_path"] = os.path.join(dataset_path, data["cleaned_path"])
        data["train_path"] = os.path.join(dataset_path, data["train_path"])
        data["val_path"] = os.path.join(dataset_path, data["val_path"])
        data["config_path"] = os.path.join(dataset_path, data["config_path"])

        return cls(**data)


class Bert_gen_config:
    """bert_gen 配置"""

    def __init__(
        self,
        config_path: str,
        num_processes: int = 2,
        device: str = "cuda",
        use_multi_device: bool = False,
    ):
        self.config_path = config_path
        self.num_processes = num_processes
        if not cuda_available:
            device = "cpu"
        self.device = device
        self.use_multi_device = use_multi_device

    @classmethod
    def from_dict(cls, dataset_path: str, data: Dict[str, any]):
        data["config_path"] = os.path.join(dataset_path, data["config_path"])

        return cls(**data)


class Style_gen_config:
    """style_gen 配置"""

    def __init__(
        self,
        config_path: str,
        num_processes: int = 4,
        device: str = "cuda",
    ):
        self.config_path = config_path
        self.num_processes = num_processes
        if not cuda_available:
            device = "cpu"
        self.device = device

    @classmethod
    def from_dict(cls, dataset_path: str, data: Dict[str, any]):
        data["config_path"] = os.path.join(dataset_path, data["config_path"])

        return cls(**data)


class Train_ms_config:
    """训练配置"""

    def __init__(
        self,
        config_path: str,
        env: Dict[str, any],
        # base: Dict[str, any],
        model_dir: str,
        num_workers: int,
        spec_cache: bool,
        keep_ckpts: int,
    ):
        self.env = env  # 需要加载的环境变量
        # self.base = base  # 底模配置
        self.model_dir = model_dir  # 训练模型存储目录,该路径为相对于dataset_path的路径,而非项目根目录
        self.config_path = config_path  # 配置文件路径
        self.num_workers = num_workers  # worker数量
        self.spec_cache = spec_cache  # 是否启用spec缓存
        self.keep_ckpts = keep_ckpts  # ckpt数量

    @classmethod
    def from_dict(cls, dataset_path: str, data: Dict[str, any]):
        # data["model"] = os.path.join(dataset_path, data["model"])
        data["config_path"] = os.path.join(dataset_path, data["config_path"])

        return cls(**data)


class Webui_config:
    """webui 配置 (for webui.py, not supported now)"""

    def __init__(
        self,
        device: str,
        model: str,
        config_path: str,
        language_identification_library: str,
        port: int = 7860,
        share: bool = False,
        debug: bool = False,
    ):
        if not cuda_available:
            device = "cpu"
        self.device: str = device
        self.model: str = model  # 端口号
        self.config_path: str = config_path  # 是否公开部署,对外网开放
        self.port: int = port  # 是否开启debug模式
        self.share: bool = share  # 模型路径
        self.debug: bool = debug  # 配置文件路径
        self.language_identification_library: str = (
            language_identification_library  # 语种识别库
        )

    @classmethod
    def from_dict(cls, dataset_path: str, data: Dict[str, any]):
        data["config_path"] = os.path.join(dataset_path, data["config_path"])
        data["model"] = os.path.join(dataset_path, data["model"])
        return cls(**data)


class Server_config:
    def __init__(
        self,
        port: int = 5000,
        device: str = "cuda",
        limit: int = 100,
        language: str = "JP",
        origins: List[str] = None,
    ):
        self.port: int = port
        if not cuda_available:
            device = "cpu"
        self.device: str = device
        self.language: str = language
        self.limit: int = limit
        self.origins: List[str] = origins

    @classmethod
    def from_dict(cls, data: Dict[str, any]):
        return cls(**data)


class Translate_config:
    """翻译api配置"""

    def __init__(self, app_key: str, secret_key: str):
        self.app_key = app_key
        self.secret_key = secret_key

    @classmethod
    def from_dict(cls, data: Dict[str, any]):
        return cls(**data)


class Config:
    def __init__(self, config_path: str, path_config: dict[str, str]):
        if not os.path.isfile(config_path) and os.path.isfile("default_config.yml"):
            shutil.copy(src="default_config.yml", dst=config_path)
            logger.info(
                f"A configuration file {config_path} has been generated based on the default configuration file default_config.yml."
            )
            logger.info(
                "If you have no special needs, please do not modify default_config.yml."
            )
            # sys.exit(0)
        with open(file=config_path, mode="r", encoding="utf-8") as file:
            yaml_config: Dict[str, any] = yaml.safe_load(file.read())
            model_name: str = yaml_config["model_name"]
            self.model_name: str = model_name
            if "dataset_path" in yaml_config:
                dataset_path = yaml_config["dataset_path"]
            else:
                dataset_path = os.path.join(path_config["dataset_root"], model_name)
            self.dataset_path: str = dataset_path
            self.assets_root: str = path_config["assets_root"]
            self.out_dir = os.path.join(self.assets_root, model_name)
            self.resample_config: Resample_config = Resample_config.from_dict(
                dataset_path, yaml_config["resample"]
            )
            self.preprocess_text_config: Preprocess_text_config = (
                Preprocess_text_config.from_dict(
                    dataset_path, yaml_config["preprocess_text"]
                )
            )
            self.bert_gen_config: Bert_gen_config = Bert_gen_config.from_dict(
                dataset_path, yaml_config["bert_gen"]
            )
            self.style_gen_config: Style_gen_config = Style_gen_config.from_dict(
                dataset_path, yaml_config["style_gen"]
            )
            self.train_ms_config: Train_ms_config = Train_ms_config.from_dict(
                dataset_path, yaml_config["train_ms"]
            )
            self.webui_config: Webui_config = Webui_config.from_dict(
                dataset_path, yaml_config["webui"]
            )
            self.server_config: Server_config = Server_config.from_dict(
                yaml_config["server"]
            )
            # self.translate_config: Translate_config = Translate_config.from_dict(
            #     yaml_config["translate"]
            # )


with open(os.path.join("configs", "paths.yml"), "r", encoding="utf-8") as f:
    path_config: dict[str, str] = yaml.safe_load(f.read())
    # Should contain the following keys:
    # - dataset_root: the root directory of the dataset, default to "Data"
    # - assets_root: the root directory of the assets, default to "model_assets"


try:
    config = Config("config.yml", path_config)
except (TypeError, KeyError):
    logger.warning("Old config.yml found. Replace it with default_config.yml.")
    shutil.copy(src="default_config.yml", dst="config.yml")
    config = Config("config.yml", path_config)