TAKESHI0\ogawa
up
3f200e5
import torch
import commons
import utils
from models import SynthesizerTrn
from models_jp_extra import SynthesizerTrn as SynthesizerTrnJPExtra
from text import cleaned_text_to_sequence, get_bert
from text.cleaner import clean_text
from text.symbols import symbols
from common.log import logger
class InvalidToneError(ValueError):
pass
def get_net_g(model_path: str, version: str, device: str, hps):
if version.endswith("JP-Extra"):
logger.info("Using JP-Extra model")
net_g = SynthesizerTrnJPExtra(
len(symbols),
hps.data.filter_length // 2 + 1,
hps.train.segment_size // hps.data.hop_length,
n_speakers=hps.data.n_speakers,
**hps.model,
).to(device)
else:
logger.info("Using normal model")
net_g = SynthesizerTrn(
len(symbols),
hps.data.filter_length // 2 + 1,
hps.train.segment_size // hps.data.hop_length,
n_speakers=hps.data.n_speakers,
**hps.model,
).to(device)
net_g.state_dict()
_ = net_g.eval()
if model_path.endswith(".pth") or model_path.endswith(".pt"):
_ = utils.load_checkpoint(model_path, net_g, None, skip_optimizer=True)
elif model_path.endswith(".safetensors"):
_ = utils.load_safetensors(model_path, net_g, True)
else:
raise ValueError(f"Unknown model format: {model_path}")
return net_g
def get_text(
text,
language_str,
hps,
device,
assist_text=None,
assist_text_weight=0.7,
given_tone=None,
):
use_jp_extra = hps.version.endswith("JP-Extra")
norm_text, phone, tone, word2ph = clean_text(text, language_str, use_jp_extra)
if given_tone is not None:
if len(given_tone) != len(phone):
raise InvalidToneError(
f"Length of given_tone ({len(given_tone)}) != length of phone ({len(phone)})"
)
tone = given_tone
phone, tone, language = cleaned_text_to_sequence(phone, tone, language_str)
if hps.data.add_blank:
phone = commons.intersperse(phone, 0)
tone = commons.intersperse(tone, 0)
language = commons.intersperse(language, 0)
for i in range(len(word2ph)):
word2ph[i] = word2ph[i] * 2
word2ph[0] += 1
bert_ori = get_bert(
norm_text, word2ph, language_str, device, assist_text, assist_text_weight
)
del word2ph
assert bert_ori.shape[-1] == len(phone), phone
if language_str == "ZH":
bert = bert_ori
ja_bert = torch.zeros(1024, len(phone))
en_bert = torch.zeros(1024, len(phone))
elif language_str == "JP":
bert = torch.zeros(1024, len(phone))
ja_bert = bert_ori
en_bert = torch.zeros(1024, len(phone))
elif language_str == "EN":
bert = torch.zeros(1024, len(phone))
ja_bert = torch.zeros(1024, len(phone))
en_bert = bert_ori
else:
raise ValueError("language_str should be ZH, JP or EN")
assert bert.shape[-1] == len(
phone
), f"Bert seq len {bert.shape[-1]} != {len(phone)}"
phone = torch.LongTensor(phone)
tone = torch.LongTensor(tone)
language = torch.LongTensor(language)
return bert, ja_bert, en_bert, phone, tone, language
def infer(
text,
style_vec,
sdp_ratio,
noise_scale,
noise_scale_w,
length_scale,
sid: int, # In the original Bert-VITS2, its speaker_name: str, but here it's id
language,
hps,
net_g,
device,
skip_start=False,
skip_end=False,
assist_text=None,
assist_text_weight=0.7,
given_tone=None,
):
is_jp_extra = hps.version.endswith("JP-Extra")
bert, ja_bert, en_bert, phones, tones, lang_ids = get_text(
text,
language,
hps,
device,
assist_text=assist_text,
assist_text_weight=assist_text_weight,
given_tone=given_tone,
)
if skip_start:
phones = phones[3:]
tones = tones[3:]
lang_ids = lang_ids[3:]
bert = bert[:, 3:]
ja_bert = ja_bert[:, 3:]
en_bert = en_bert[:, 3:]
if skip_end:
phones = phones[:-2]
tones = tones[:-2]
lang_ids = lang_ids[:-2]
bert = bert[:, :-2]
ja_bert = ja_bert[:, :-2]
en_bert = en_bert[:, :-2]
with torch.no_grad():
x_tst = phones.to(device).unsqueeze(0)
tones = tones.to(device).unsqueeze(0)
lang_ids = lang_ids.to(device).unsqueeze(0)
bert = bert.to(device).unsqueeze(0)
ja_bert = ja_bert.to(device).unsqueeze(0)
en_bert = en_bert.to(device).unsqueeze(0)
x_tst_lengths = torch.LongTensor([phones.size(0)]).to(device)
style_vec = torch.from_numpy(style_vec).to(device).unsqueeze(0)
del phones
sid_tensor = torch.LongTensor([sid]).to(device)
if is_jp_extra:
output = net_g.infer(
x_tst,
x_tst_lengths,
sid_tensor,
tones,
lang_ids,
ja_bert,
style_vec=style_vec,
sdp_ratio=sdp_ratio,
noise_scale=noise_scale,
noise_scale_w=noise_scale_w,
length_scale=length_scale,
)
else:
output = net_g.infer(
x_tst,
x_tst_lengths,
sid_tensor,
tones,
lang_ids,
bert,
ja_bert,
en_bert,
style_vec=style_vec,
sdp_ratio=sdp_ratio,
noise_scale=noise_scale,
noise_scale_w=noise_scale_w,
length_scale=length_scale,
)
audio = output[0][0, 0].data.cpu().float().numpy()
del (
x_tst,
tones,
lang_ids,
bert,
x_tst_lengths,
sid_tensor,
ja_bert,
en_bert,
style_vec,
) # , emo
if torch.cuda.is_available():
torch.cuda.empty_cache()
return audio
def infer_multilang(
text,
style_vec,
sdp_ratio,
noise_scale,
noise_scale_w,
length_scale,
sid,
language,
hps,
net_g,
device,
skip_start=False,
skip_end=False,
):
bert, ja_bert, en_bert, phones, tones, lang_ids = [], [], [], [], [], []
# emo = get_emo_(reference_audio, emotion, sid)
# if isinstance(reference_audio, np.ndarray):
# emo = get_clap_audio_feature(reference_audio, device)
# else:
# emo = get_clap_text_feature(emotion, device)
# emo = torch.squeeze(emo, dim=1)
for idx, (txt, lang) in enumerate(zip(text, language)):
_skip_start = (idx != 0) or (skip_start and idx == 0)
_skip_end = (idx != len(language) - 1) or skip_end
(
temp_bert,
temp_ja_bert,
temp_en_bert,
temp_phones,
temp_tones,
temp_lang_ids,
) = get_text(txt, lang, hps, device)
if _skip_start:
temp_bert = temp_bert[:, 3:]
temp_ja_bert = temp_ja_bert[:, 3:]
temp_en_bert = temp_en_bert[:, 3:]
temp_phones = temp_phones[3:]
temp_tones = temp_tones[3:]
temp_lang_ids = temp_lang_ids[3:]
if _skip_end:
temp_bert = temp_bert[:, :-2]
temp_ja_bert = temp_ja_bert[:, :-2]
temp_en_bert = temp_en_bert[:, :-2]
temp_phones = temp_phones[:-2]
temp_tones = temp_tones[:-2]
temp_lang_ids = temp_lang_ids[:-2]
bert.append(temp_bert)
ja_bert.append(temp_ja_bert)
en_bert.append(temp_en_bert)
phones.append(temp_phones)
tones.append(temp_tones)
lang_ids.append(temp_lang_ids)
bert = torch.concatenate(bert, dim=1)
ja_bert = torch.concatenate(ja_bert, dim=1)
en_bert = torch.concatenate(en_bert, dim=1)
phones = torch.concatenate(phones, dim=0)
tones = torch.concatenate(tones, dim=0)
lang_ids = torch.concatenate(lang_ids, dim=0)
with torch.no_grad():
x_tst = phones.to(device).unsqueeze(0)
tones = tones.to(device).unsqueeze(0)
lang_ids = lang_ids.to(device).unsqueeze(0)
bert = bert.to(device).unsqueeze(0)
ja_bert = ja_bert.to(device).unsqueeze(0)
en_bert = en_bert.to(device).unsqueeze(0)
# emo = emo.to(device).unsqueeze(0)
x_tst_lengths = torch.LongTensor([phones.size(0)]).to(device)
del phones
speakers = torch.LongTensor([hps.data.spk2id[sid]]).to(device)
audio = (
net_g.infer(
x_tst,
x_tst_lengths,
speakers,
tones,
lang_ids,
bert,
ja_bert,
en_bert,
style_vec=style_vec,
sdp_ratio=sdp_ratio,
noise_scale=noise_scale,
noise_scale_w=noise_scale_w,
length_scale=length_scale,
)[0][0, 0]
.data.cpu()
.float()
.numpy()
)
del (
x_tst,
tones,
lang_ids,
bert,
x_tst_lengths,
speakers,
ja_bert,
en_bert,
) # , emo
if torch.cuda.is_available():
torch.cuda.empty_cache()
return audio