Spaces:
Running
Running
from transformers import AutoTokenizer, AutoModelForTokenClassification, pipeline, NerPipeline | |
class BaselineCommaFixer: | |
def __init__(self): | |
self._ner = _create_baseline_pipeline() | |
def fix_commas(self, s: str) -> str: | |
return _fix_commas_based_on_pipeline_output( | |
self._ner(_remove_punctuation(s)), | |
s | |
) | |
def _create_baseline_pipeline(model_name="oliverguhr/fullstop-punctuation-multilang-large") -> NerPipeline: | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
model = AutoModelForTokenClassification.from_pretrained(model_name) | |
return pipeline('ner', model=model, tokenizer=tokenizer) | |
def _remove_punctuation(s: str) -> str: | |
to_remove = ".,?-:" | |
for char in to_remove: | |
s = s.replace(char, '') | |
return s | |
def _fix_commas_based_on_pipeline_output(pipeline_json: list[dict], original_s: str) -> str: | |
result = original_s.replace(',', '') # We will fix the commas, but keep everything else intact | |
current_offset = 0 | |
for i in range(1, len(pipeline_json)): | |
current_offset = _find_current_token(current_offset, i, pipeline_json, result) | |
if _should_insert_comma(i, pipeline_json): | |
result = result[:current_offset] + ',' + result[current_offset:] | |
current_offset += 1 | |
return result | |
def _should_insert_comma(i, pipeline_json, new_word_indicator='β') -> bool: | |
# Only insert commas for the final token of a word | |
return pipeline_json[i - 1]['entity'] == ',' and pipeline_json[i]['word'].startswith(new_word_indicator) | |
def _find_current_token(current_offset, i, pipeline_json, result, new_word_indicator='β') -> int: | |
current_word = pipeline_json[i - 1]['word'].replace(new_word_indicator, '') | |
# Find the current word in the result string, starting looking at current offset | |
current_offset = result.find(current_word, current_offset) + len(current_word) | |
return current_offset | |
if __name__ == "__main__": | |
BaselineCommaFixer() # to pre-download the model and tokenizer | |