from transformers import AutoTokenizer, AutoModelForTokenClassification, pipeline, NerPipeline class BaselineCommaFixer: def __init__(self): self._ner = _create_baseline_pipeline() def fix_commas(self, s: str) -> str: return _fix_commas_based_on_pipeline_output( self._ner(_remove_punctuation(s)), s ) def _create_baseline_pipeline(model_name="oliverguhr/fullstop-punctuation-multilang-large") -> NerPipeline: tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForTokenClassification.from_pretrained(model_name) return pipeline('ner', model=model, tokenizer=tokenizer) def _remove_punctuation(s: str) -> str: to_remove = ".,?-:" for char in to_remove: s = s.replace(char, '') return s def _fix_commas_based_on_pipeline_output(pipeline_json: list[dict], original_s: str) -> str: result = original_s.replace(',', '') # We will fix the commas, but keep everything else intact current_offset = 0 for i in range(1, len(pipeline_json)): current_offset = _find_current_token(current_offset, i, pipeline_json, result) if _should_insert_comma(i, pipeline_json): result = result[:current_offset] + ',' + result[current_offset:] current_offset += 1 return result def _should_insert_comma(i, pipeline_json, new_word_indicator='▁') -> bool: # Only insert commas for the final token of a word return pipeline_json[i - 1]['entity'] == ',' and pipeline_json[i]['word'].startswith(new_word_indicator) def _find_current_token(current_offset, i, pipeline_json, result, new_word_indicator='▁') -> int: current_word = pipeline_json[i - 1]['word'].replace(new_word_indicator, '') # Find the current word in the result string, starting looking at current offset current_offset = result.find(current_word, current_offset) + len(current_word) return current_offset if __name__ == "__main__": BaselineCommaFixer() # to pre-download the model and tokenizer