import torch.nn as nn import numpy as np from transformers import ViTFeatureExtractor, ViTModel, ViTForImageClassification, TrainingArguments, Trainer, \ default_data_collator, EarlyStoppingCallback from transformers.modeling_outputs import SequenceClassifierOutput from datasets import load_dataset, load_metric, Features, ClassLabel, Array3D train_ds, test_ds = load_dataset('cifar10', split=['train[:5000]', 'test[:2000]']) splits = train_ds.train_test_split(test_size=0.1) train_ds = splits['train'] val_ds = splits['test'] feature_extractor = ViTFeatureExtractor.from_pretrained('google/vit-base-patch16-224-in21k') data_collator = default_data_collator def preprocess_images(examples): images = examples['img'] images = [np.array(image, dtype=np.uint8) for image in images] images = [np.moveaxis(image, source=-1, destination=0) for image in images] inputs = feature_extractor(images=images) examples['pixel_values'] = inputs['pixel_values'] return examples features = Features({ 'label': ClassLabel( names=['airplane', 'automobile', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck']), 'img': Array3D(dtype="int64", shape=(3, 32, 32)), 'pixel_values': Array3D(dtype="float32", shape=(3, 224, 224)), }) preprocessed_train_ds = train_ds.map(preprocess_images, batched=True, features=features) preprocessed_val_ds = val_ds.map(preprocess_images, batched=True, features=features) preprocessed_test_ds = test_ds.map(preprocess_images, batched=True, features=features) class ViTForImageClassification2(nn.Module): def __init__(self, num_labels=10): super(ViTForImageClassification2, self).__init__() self.vit = ViTModel.from_pretrained('google/vit-base-patch16-224-in21k') self.classifier = nn.Linear(self.vit.config.hidden_size, num_labels) self.num_labels = num_labels def forward(self, pixel_values, labels): outputs = self.vit(pixel_values=pixel_values) logits = self.classifier(outputs.last_hidden_state[:, 0]) loss = None if labels is not None: loss_fct = nn.CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) return SequenceClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) args = TrainingArguments( f"test-cifar-10", evaluation_strategy="epoch", learning_rate=2e-5, per_device_train_batch_size=10, per_device_eval_batch_size=4, num_train_epochs=3, weight_decay=0.01, load_best_model_at_end=True, metric_for_best_model="accuracy", logging_dir='logs', ) # model = ViTForImageClassification() model = ViTForImageClassification2() def compute_metrics(eval_pred): predictions, labels = eval_pred predictions = np.argmax(predictions, axis=1) return load_metric("accuracy").compute(predictions=predictions, references=labels) trainer = Trainer( model, args, train_dataset=preprocessed_train_ds, eval_dataset=preprocessed_val_ds, data_collator=data_collator, compute_metrics=compute_metrics, ) trainer.train() outputs = trainer.predict(preprocessed_test_ds)