Spaces:
Sleeping
Sleeping
File size: 8,105 Bytes
93e1b64 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 |
# %%
import rdflib
import pandas as pd
def get_graph():
# File with the graph: MGCONSO.RRF
df_concepts = pd.read_csv("MGCONSO.RRF", sep="|", header=0)
# Rename the column '#CUI' to 'CUI'
df_concepts.rename(columns={"#CUI": "CUI"}, inplace=True)
# Remove the last column, it's empty
df_concepts = df_concepts.iloc[:, :-1]
print(df_concepts.head())
# Create a graph
g = rdflib.Graph()
# Bind the namespace
g.bind("medgen", "http://identifiers.org/medgen/")
# Iterate over the rows
for i, row in df_concepts.iterrows():
if row.SUPPRESS == "Y":
continue
if row.ISPREF == "Y" and row.STT == "PF" and row.TS == "P":
# Create the URI
uri = rdflib.URIRef(f"http://identifiers.org/medgen/{row.CUI}")
# Add the triple
g.add((uri, rdflib.RDFS.label, rdflib.Literal(row.STR)))
# Now, load MGREL.RRF
df_relations = pd.read_csv("MGREL.RRF", sep="|", header=0)
# Rename the column '#CUI1' to 'CUI1'
df_relations.rename(columns={"#CUI1": "CUI1"}, inplace=True)
# Remove the last column, it's empty
df_relations = df_relations.iloc[:, :-1]
print(df_relations.head())
# Iterate over the rows
for i, row in df_relations.iterrows():
if row.SUPPRESS == "Y":
continue
# Create the URI
uri1 = rdflib.URIRef(f"http://identifiers.org/medgen/{row.CUI1}")
uri2 = rdflib.URIRef(f"http://identifiers.org/medgen/{row.CUI2}")
# Add the triple
if row.REL == "RL":
g.add((uri1, rdflib.URIRef("related"), uri2))
continue
g.add((uri1, rdflib.URIRef(f"http://identifiers.org/medgen/{row.REL}"), uri2))
return g
def apply_rules_to_graph(g):
# Now, apply this rule: if two nodes have the same parent (i.e. node1 RB node2 and node3 RB node2, then node1 related node3)
# Query the graph to get the parents of each node
query = """
PREFIX medgen: <http://identifiers.org/medgen/>
SELECT DISTINCT ?parent ?child1 ?child2 WHERE {
?parent medgen:RN ?child1 .
?parent medgen:RN ?child2 .
FILTER (?child1 != ?child2)
}
"""
res = g.query(query)
for row in res:
g.add((row.child1, rdflib.URIRef("related"), row.child2))
g.add((row.child2, rdflib.URIRef("related"), row.child1))
return g
def get_labels_of_entities():
"""
Returns a dictionary with the labels of the entities
"""
# File with the graph: MGCONSO.RRF
df_concepts = pd.read_csv("MGCONSO.RRF", sep="|", header=0)
# Rename the column '#CUI' to 'CUI'
df_concepts.rename(columns={"#CUI": "CUI"}, inplace=True)
# Remove the last column, it's empty
df_concepts = df_concepts.iloc[:, :-1]
# Create a dictionary
labels_of_entities = {}
# Iterate over the rows
for i, row in df_concepts.iterrows():
if row.SUPPRESS == "Y":
continue
if row.ISPREF == "Y" and row.STT == "PF" and row.TS == "P":
labels_of_entities[f"http://identifiers.org/medgen/{row.CUI}"] = row.STR
return labels_of_entities
def generate_triples_file(graph: rdflib.Graph):
with open("triples_medgen.tsv", "w") as f:
# Output the triples ?s ?p ?o
for s, p, o in graph.triples((None, rdflib.URIRef("related"), None)):
f.write(f"{s}\t{p}\t{o}\n")
for s, p, o in graph.triples(
(None, rdflib.URIRef("http://identifiers.org/medgen/RN"), None)
):
f.write(f"{s}\t{p}\t{o}\n")
for s, p, o in graph.triples(
(None, rdflib.URIRef("http://identifiers.org/medgen/RB"), None)
):
f.write(f"{s}\t{p}\t{o}\n")
for s, p, o in graph.triples((None, rdflib.URIRef("http://identifiers.org/medgen/PAR"), None)):
f.write(f"{s}\t{p}\t{o}\n")
for s, p, o in graph.triples((None, rdflib.URIRef("http://identifiers.org/medgen/CHD"), None)):
f.write(f"{s}\t{p}\t{o}\n")
def save_adjacency_matrix():
# Load the triples file generated
df = pd.read_csv("triples_medgen.tsv", sep="\t", header=None)
# Now output the adjacency matrix, where the rows are the subjects and the columns are the objects
# The values are the relations (i.e. 0 if no relation and 1 if there is a relation)
# Get the unique subjects and objects
subjects = df[0].unique()
objects = df[2].unique()
# Create the adjacency matrix
adj_matrix = pd.DataFrame(0, index=subjects, columns=objects)
# Iterate over the rows
for i, row in df.iterrows():
adj_matrix.loc[row[0], row[2]] = 1
# Save the adjacency matrix
adj_matrix.to_csv("adjacency_matrix.mat", sep="\t")
# %%
g = get_graph()
# %%
g = apply_rules_to_graph(g)
# %%
labels_of_entities = get_labels_of_entities()
# %%
generate_triples_file(g)
# %%
from pykeen.triples import TriplesFactory
from pykeen.models import TuckER, TransE, TransH
from pykeen.pipeline import pipeline
tf = TriplesFactory.from_path("triples_medgen.tsv")
print(f"Triples count: {tf.num_triples}")
training, testing, validation = tf.split([0.8, 0.1, 0.1], random_state=42, randomize_cleanup=False)
result = pipeline(
training=training,
testing=testing,
validation=validation,
model=TransE,
stopper="early",
epochs=500, # short epochs for testing - you should go
# higher, especially with early stopper enabled
)
result.save_to_directory("doctests/test_unstratified_stopped_complex")
# %%
import torch
alzheimers = "http://identifiers.org/medgen/C1843013"
# What does the model predict for Alzheimer's disease?
model = result.model
alzheimers_id = tf.entity_to_id[alzheimers]
relation_id = tf.relation_to_id["related"]
batch_to_predict = torch.tensor([[alzheimers_id, relation_id]])
alzheimers_pred = model.predict_t(hr_batch=batch_to_predict)
print(alzheimers_pred.shape)
# Get the indices of the top 10 predictions
top10 = torch.topk(alzheimers_pred, 10, largest=True)
# Get the entities
entities = tf.entity_id_to_label
print(top10.indices)
for i in top10.indices[0]:
# Ask the graph, what is the label for this entity?
query = f"""
PREFIX medgen: <http://identifiers.org/medgen/>
SELECT ?label WHERE {{
<{entities[i.item()]}> <http://www.w3.org/2000/01/rdf-schema#label> ?label
}}
"""
res = g.query(query)
for i, row in enumerate(res):
print(f"{i}: {row}")
# %%
from pykeen.nn.representation import Embedding
# Get the embeddings of all the entities
entity_ids = torch.LongTensor(list(tf.entity_to_id.values())).cuda()
entity_embeddings: Embedding = model.entity_representations[0]._embeddings(entity_ids)
# Get the embeddings of the relations
relation_ids = torch.LongTensor(list(tf.relation_to_id.values())).cuda()
relation_embeddings: Embedding = model.relation_representations[0]._embeddings(
relation_ids
)
print(f"Entity embeddings shape: {entity_embeddings.shape}")
print(f"Relation embeddings shape: {relation_embeddings.shape}")
# Store the embeddings in a DataFrame
df = pd.DataFrame(
{
"embedding": entity_embeddings.detach().cpu().tolist(),
"label": [
labels_of_entities[tf.entity_id_to_label[i]] if tf.entity_id_to_label[i] in labels_of_entities else ""
for i in range(len(tf.entity_id_to_label))
],
"uri": [
f"{tf.entity_id_to_label[i]}" for i in range(len(tf.entity_id_to_label))
],
},
index=range(len(entity_embeddings)),
)
## Save the DataFrame
df.to_csv("entity_embeddings.csv")
# Store the embeddings in a DataFrame
df = pd.DataFrame(
{
"embedding": relation_embeddings.detach().cpu().tolist(),
"label": [
tf.relation_id_to_label[i] for i in range(len(tf.relation_id_to_label))
],
"uri": [
f"{tf.relation_id_to_label[i]}" for i in range(len(tf.relation_id_to_label))
],
},
index=range(len(relation_embeddings)),
)
## Save the DataFrame
df.to_csv("relation_embeddings.csv")
# %%
import pyobo
pyobo.get_name("mesh", "16793")
# %%
|