klinic / utils.py
ACMCMC
UI Changes
27d40b9
raw
history blame
8.56 kB
# %%
from typing import List, Dict, Any
import os
from sqlalchemy import create_engine, text
import requests
from sentence_transformers import SentenceTransformer
username = "demo"
password = "demo"
hostname = os.getenv("IRIS_HOSTNAME", "localhost")
port = "1972"
namespace = "USER"
CONNECTION_STRING = f"iris://{username}:{password}@{hostname}:{port}/{namespace}"
engine = create_engine(CONNECTION_STRING)
def get_all_diseases_name(engine) -> List[List[str]]:
with engine.connect() as conn:
with conn.begin():
sql = f"""
SELECT * FROM Test.EntityEmbeddings
"""
result = conn.execute(text(sql))
data = result.fetchall()
all_diseases = [row[1] for row in data if row[1] != "nan"]
return all_diseases
def get_uri_from_name(engine, name: str) -> str:
with engine.connect() as conn:
with conn.begin():
sql = f"""
SELECT uri FROM Test.EntityEmbeddings
WHERE label = '{name}'
"""
result = conn.execute(text(sql))
data = result.fetchall()
return data[0][0].split("/")[-1]
def get_most_similar_diseases_from_uri(
engine, original_disease_uri: str, threshold: float = 0.8
) -> List[str]:
with engine.connect() as conn:
with conn.begin():
sql = f"""
SELECT * FROM Test.EntityEmbeddings
"""
result = conn.execute(text(sql))
data = result.fetchall()
all_diseases = [row[1] for row in data if row[1] != "nan"]
return all_diseases
def get_uri_from_name(engine, name: str) -> str:
with engine.connect() as conn:
with conn.begin():
sql = f"""
SELECT uri FROM Test.EntityEmbeddings
WHERE label = '{name}'
"""
result = conn.execute(text(sql))
data = result.fetchall()
return data[0][0].split("/")[-1]
def get_most_similar_diseases_from_uri(
engine, original_disease_uri: str, threshold: float = 0.8
) -> List[str]:
with engine.connect() as conn:
with conn.begin():
sql = f"""
SELECT TOP 10 e1.uri AS uri1, e2.uri AS uri2, e1.label AS label1, e2.label AS label2,
VECTOR_COSINE(e1.embedding, e2.embedding) AS distance
FROM Test.EntityEmbeddings e1, Test.EntityEmbeddings e2
WHERE e1.uri = 'http://identifiers.org/medgen/{original_disease_uri}'
AND VECTOR_COSINE(e1.embedding, e2.embedding) > {threshold}
AND e1.uri != e2.uri
ORDER BY distance DESC
"""
result = conn.execute(text(sql))
data = result.fetchall()
similar_diseases = [
(row[1].split("/")[-1], row[3], row[4]) for row in data if row[3] != "nan"
]
return similar_diseases
def get_clinical_record_info(clinical_record_id: str) -> Dict[str, Any]:
# Request:
# curl -X GET "https://clinicaltrials.gov/api/v2/studies/NCT00841061" \
# -H "accept: text/csv"
request_url = f"https://clinicaltrials.gov/api/v2/studies/{clinical_record_id}"
response = requests.get(request_url, headers={"accept": "application/json"})
return response.json()
def get_clinical_records_by_ids(clinical_record_ids: List[str]) -> List[Dict[str, Any]]:
clinical_records = []
for clinical_record_id in clinical_record_ids:
clinical_record_info = get_clinical_record_info(clinical_record_id)
clinical_records.append(clinical_record_info)
return clinical_records
def get_similarities_among_diseases_uris(
uri_list: List[str],
) -> List[tuple[str, str, float]]:
uri_list = ", ".join([f"'{uri}'" for uri in uri_list])
with engine.connect() as conn:
with conn.begin():
sql = f"""
SELECT e1.uri AS uri1, e2.uri AS uri2, VECTOR_COSINE(e1.embedding, e2.embedding) AS distance
FROM Test.EntityEmbeddings e1, Test.EntityEmbeddings e2
WHERE e1.uri IN ({uri_list}) AND e2.uri IN ({uri_list}) AND e1.uri != e2.uri
"""
result = conn.execute(text(sql))
data = result.fetchall()
return data
def augment_the_set_of_diseaces(diseases: List[str]) -> str:
print(diseases)
for i in range(15-len(diseases)):
with engine.connect() as conn:
with conn.begin():
sql = f"""
SELECT TOP 1 e2.uri AS new_disease, (SUM(VECTOR_COSINE(e1.embedding, e2.embedding))/ {len(diseases)}) AS score
FROM Test.EntityEmbeddings e1, Test.EntityEmbeddings e2
WHERE e1.uri IN ({','.join([f"'{disease}'" for disease in diseases])})
AND e2.uri NOT IN ({','.join([f"'{disease}'" for disease in diseases])})
AND e2.label != 'nan'
GROUP BY e2.label
ORDER BY score DESC
"""
result = conn.execute(text(sql))
data = result.fetchall()
diseases.append(data[0][0].split('/')[-1])
return diseases
def get_embedding(string: str, encoder) -> List[float]:
# Embed the string using sentence-transformers
vector = encoder.encode(string, show_progress_bar=False)
return vector
def get_diseases_related_to_a_textual_description(
description: str, encoder
) -> List[str]:
# Embed the description using sentence-transformers
description_embedding = get_embedding(description, encoder)
string_representation = str(description_embedding.tolist())[1:-1]
with engine.connect() as conn:
with conn.begin():
sql = f"""
SELECT TOP 5 d.uri, VECTOR_COSINE(d.embedding, TO_VECTOR('{string_representation}', DOUBLE)) AS distance
FROM Test.DiseaseDescriptions d
ORDER BY distance DESC
"""
result = conn.execute(text(sql))
data = result.fetchall()
return [{"uri": row[0], "distance": row[1]} for row in data]
def get_clinical_trials_related_to_diseases(
diseases: List[str], encoder
) -> List[str]:
# Embed the diseases using sentence-transformers
diseases_string = ", ".join(diseases)
disease_embedding = get_embedding(diseases_string, encoder)
string_representation = str(disease_embedding.tolist())[1:-1]
with engine.connect() as conn:
with conn.begin():
sql = f"""
SELECT TOP 5 d.nct_id, VECTOR_COSINE(d.embedding, TO_VECTOR('{string_representation}', DOUBLE)) AS distance
FROM Test.ClinicalTrials d
ORDER BY distance DESC
"""
result = conn.execute(text(sql))
data = result.fetchall()
return [{"nct_id": row[0], "distance": row[1]} for row in data]
if __name__ == "__main__":
username = "demo"
password = "demo"
hostname = os.getenv("IRIS_HOSTNAME", "localhost")
port = "1972"
namespace = "USER"
CONNECTION_STRING = f"iris://{username}:{password}@{hostname}:{port}/{namespace}"
try:
engine = create_engine(CONNECTION_STRING)
diseases = get_most_similar_diseases_from_uri("C1843013")
for disease in diseases:
print(disease)
except Exception as e:
print(e)
try:
print(get_uri_from_name(engine, "Alzheimer disease 3"))
except Exception as e:
print(e)
clinical_record_info = get_clinical_records_by_ids(["NCT00841061"])
print(clinical_record_info)
textual_description = (
"A disease that causes memory loss and other cognitive impairments."
)
encoder = SentenceTransformer("allenai-specter")
diseases = get_diseases_related_to_a_textual_description(
textual_description, encoder
)
for disease in diseases:
print(disease)
try:
similarities = get_similarities_among_diseases_uris(
[
"http://identifiers.org/medgen/C4553765",
"http://identifiers.org/medgen/C4553176",
"http://identifiers.org/medgen/C4024935",
]
)
for similarity in similarities:
print(
f'{similarity[0].split("/")[-1]} and {similarity[1].split("/")[-1]} have a similarity of {similarity[2]}'
)
except Exception as e:
print(e)
# %%