Spaces:
Sleeping
Sleeping
Cosmetics
Browse files
app.py
CHANGED
@@ -19,9 +19,13 @@ import numpy as np
|
|
19 |
from sentence_transformers import SentenceTransformer
|
20 |
|
21 |
|
22 |
-
|
23 |
-
|
|
|
|
|
|
|
24 |
|
|
|
25 |
username = "demo"
|
26 |
password = "demo"
|
27 |
hostname = os.getenv("IRIS_HOSTNAME", "localhost")
|
@@ -30,116 +34,145 @@ namespace = "USER"
|
|
30 |
CONNECTION_STRING = f"iris://{username}:{password}@{hostname}:{port}/{namespace}"
|
31 |
engine = create_engine(CONNECTION_STRING)
|
32 |
|
33 |
-
begin.write("# Klìnic")
|
34 |
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
)
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
begin.write("## Clinical Trials Details")
|
106 |
-
trials = []
|
107 |
-
# TODO replace mock data
|
108 |
-
with open("mock_trial.json") as f:
|
109 |
-
d = json.load(f)
|
110 |
-
for i in range(0, 5):
|
111 |
-
trials.append(d)
|
112 |
-
|
113 |
-
for trial in trials:
|
114 |
-
with st.expander(f"{trial['protocolSection']['identificationModule']['nctId']}"):
|
115 |
-
official_title = trial["protocolSection"]["identificationModule"][
|
116 |
-
"officialTitle"
|
117 |
-
]
|
118 |
-
st.write(f"##### {official_title}")
|
119 |
-
|
120 |
-
brief_summary = trial["protocolSection"]["descriptionModule"]["briefSummary"]
|
121 |
-
st.write(brief_summary)
|
122 |
-
|
123 |
-
status_module = {
|
124 |
-
"Status": trial["protocolSection"]["statusModule"]["overallStatus"],
|
125 |
-
"Status Date": trial["protocolSection"]["statusModule"][
|
126 |
-
"statusVerifiedDate"
|
127 |
-
],
|
128 |
-
}
|
129 |
-
st.write("###### Status")
|
130 |
-
st.table(status_module)
|
131 |
-
|
132 |
-
design_module = {
|
133 |
-
"Study Type": trial["protocolSection"]["designModule"]["studyType"],
|
134 |
-
# "Phases": trial["protocolSection"]["designModule"]["phases"], # breaks formatting because it is an array
|
135 |
-
"Allocation": trial["protocolSection"]["designModule"]["designInfo"][
|
136 |
-
"allocation"
|
137 |
],
|
138 |
-
|
139 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
140 |
],
|
141 |
-
|
142 |
-
|
143 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
144 |
|
145 |
-
|
|
|
19 |
from sentence_transformers import SentenceTransformer
|
20 |
|
21 |
|
22 |
+
# variables to reveal next steps
|
23 |
+
show_graph = False
|
24 |
+
show_analyze_status = False
|
25 |
+
show_overview = False
|
26 |
+
show_details = False
|
27 |
|
28 |
+
# IRIS connection
|
29 |
username = "demo"
|
30 |
password = "demo"
|
31 |
hostname = os.getenv("IRIS_HOSTNAME", "localhost")
|
|
|
34 |
CONNECTION_STRING = f"iris://{username}:{password}@{hostname}:{port}/{namespace}"
|
35 |
engine = create_engine(CONNECTION_STRING)
|
36 |
|
|
|
37 |
|
38 |
+
st.title("Klìnic")
|
39 |
+
st.header("", divider='rainbow')
|
40 |
+
st.text('') # dummy to add spacing
|
41 |
+
|
42 |
+
with st.container(): # user input
|
43 |
+
col1, col2 = st.columns((6, 1))
|
44 |
+
|
45 |
+
with col1:
|
46 |
+
description_input = st.text_area(label="Enter the disease description 👇", placeholder='A disease that causes memory loss and other cognitive impairments.')
|
47 |
+
|
48 |
+
with col2:
|
49 |
+
st.text('') # dummy to center vertically
|
50 |
+
st.text('') # dummy to center vertically
|
51 |
+
st.text('') # dummy to center vertically
|
52 |
+
show_analyze_status = st.button("Analyze 🔎")
|
53 |
+
|
54 |
+
|
55 |
+
# analyze
|
56 |
+
with st.container():
|
57 |
+
if show_analyze_status:
|
58 |
+
with st.status("Analyzing...") as status:
|
59 |
+
# 1. Embed the textual description that the user entered using the model
|
60 |
+
# 2. Get 5 diseases with the highest cosine silimarity from the DB
|
61 |
+
encoder = SentenceTransformer("allenai-specter")
|
62 |
+
diseases_related_to_the_user_text = get_diseases_related_to_a_textual_description(
|
63 |
+
description_input, encoder
|
64 |
+
)
|
65 |
+
# for disease_label in diseases_related_to_the_user_text:
|
66 |
+
# st.text(disease_label)
|
67 |
+
# 3. Get the similarities of the embeddings of those diseases (cosine similarity of the embeddings of the nodes of such diseases)
|
68 |
+
diseases_uris = [disease["uri"] for disease in diseases_related_to_the_user_text]
|
69 |
+
get_similarities_among_diseases_uris(diseases_uris)
|
70 |
+
#print(diseases_related_to_the_user_text)
|
71 |
+
# 4. Potentially filter out the diseases that are not similar enough (e.g. similarity < 0.8)
|
72 |
+
# 5. Augment the set of diseases: add new diseases that are similar to the ones that are already in the set, until we get 10-15 diseases
|
73 |
+
augmented_set_of_diseases = augment_the_set_of_diseaces(diseases_uris)
|
74 |
+
#print(augmented_set_of_diseases)
|
75 |
+
# 6. Query the embeddings of the diseases related to each clinical trial (also in the DB), to get the most similar clinical trials to our set of diseases
|
76 |
+
clinical_trials_related_to_the_diseases = get_clinical_trials_related_to_diseases(
|
77 |
+
augmented_set_of_diseases, encoder
|
78 |
+
)
|
79 |
+
#print(f'clinical_trials_related_to_the_diseases: {clinical_trials_related_to_the_diseases}')
|
80 |
+
json_of_clinical_trials = get_clinical_records_by_ids(
|
81 |
+
[trial["nct_id"] for trial in clinical_trials_related_to_the_diseases]
|
82 |
+
)
|
83 |
+
#print(f'json_of_clinical_trials: {json_of_clinical_trials}')
|
84 |
+
# 8. Use an LLM to extract numerical data from the clinical trials (e.g. number of patients, number of deaths, etc.). Get summary statistics out of that.
|
85 |
+
# 9. Show the results to the user: graph of the diseases chosen, summary of the clinical trials, summary statistics of the clinical trials, and list of the details of the clinical trials considered
|
86 |
+
status.update(label="Done!", state="complete")
|
87 |
+
time.sleep(1)
|
88 |
+
show_graph = True
|
89 |
+
|
90 |
+
|
91 |
+
# graph
|
92 |
+
with st.container():
|
93 |
+
if show_graph:
|
94 |
+
# TODO actual graph
|
95 |
+
graph_of_diseases = agraph(
|
96 |
+
nodes=[
|
97 |
+
Node(id="A", label="Node A", size=10),
|
98 |
+
Node(id="B", label="Node B", size=10),
|
99 |
+
Node(id="C", label="Node C", size=10),
|
100 |
+
Node(id="D", label="Node D", size=10),
|
101 |
+
Node(id="E", label="Node E", size=10),
|
102 |
+
Node(id="F", label="Node F", size=10),
|
103 |
+
Node(id="G", label="Node G", size=10),
|
104 |
+
Node(id="H", label="Node H", size=10),
|
105 |
+
Node(id="I", label="Node I", size=10),
|
106 |
+
Node(id="J", label="Node J", size=10),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
107 |
],
|
108 |
+
edges=[
|
109 |
+
Edge(source="A", target="B"),
|
110 |
+
Edge(source="B", target="C"),
|
111 |
+
Edge(source="C", target="D"),
|
112 |
+
Edge(source="D", target="E"),
|
113 |
+
Edge(source="E", target="F"),
|
114 |
+
Edge(source="F", target="G"),
|
115 |
+
Edge(source="G", target="H"),
|
116 |
+
Edge(source="H", target="I"),
|
117 |
+
Edge(source="I", target="J"),
|
118 |
],
|
119 |
+
config=Config(height=500, width=500),
|
120 |
+
)
|
121 |
+
time.sleep(2)
|
122 |
+
show_overview = True
|
123 |
+
|
124 |
+
|
125 |
+
# overview
|
126 |
+
with st.container():
|
127 |
+
if show_overview:
|
128 |
+
st.write("## Disease Overview")
|
129 |
+
disease_overview = ":red[lorem ipsum]" # TODO
|
130 |
+
st.write(disease_overview)
|
131 |
+
time.sleep(2)
|
132 |
+
show_details = True
|
133 |
+
|
134 |
+
|
135 |
+
# details
|
136 |
+
with st.container():
|
137 |
+
if show_details:
|
138 |
+
st.write("## Clinical Trials Details")
|
139 |
+
trials = []
|
140 |
+
# TODO replace mock data
|
141 |
+
with open("mock_trial.json") as f:
|
142 |
+
d = json.load(f)
|
143 |
+
for i in range(0, 5):
|
144 |
+
trials.append(d)
|
145 |
+
|
146 |
+
for trial in trials:
|
147 |
+
with st.expander(f"{trial['protocolSection']['identificationModule']['nctId']}"):
|
148 |
+
official_title = trial["protocolSection"]["identificationModule"][
|
149 |
+
"officialTitle"
|
150 |
+
]
|
151 |
+
st.write(f"##### {official_title}")
|
152 |
+
|
153 |
+
brief_summary = trial["protocolSection"]["descriptionModule"]["briefSummary"]
|
154 |
+
st.write(brief_summary)
|
155 |
+
|
156 |
+
status_module = {
|
157 |
+
"Status": trial["protocolSection"]["statusModule"]["overallStatus"],
|
158 |
+
"Status Date": trial["protocolSection"]["statusModule"][
|
159 |
+
"statusVerifiedDate"
|
160 |
+
],
|
161 |
+
}
|
162 |
+
st.write("###### Status")
|
163 |
+
st.table(status_module)
|
164 |
+
|
165 |
+
design_module = {
|
166 |
+
"Study Type": trial["protocolSection"]["designModule"]["studyType"],
|
167 |
+
# "Phases": trial["protocolSection"]["designModule"]["phases"], # breaks formatting because it is an array
|
168 |
+
"Allocation": trial["protocolSection"]["designModule"]["designInfo"][
|
169 |
+
"allocation"
|
170 |
+
],
|
171 |
+
"Participants": trial["protocolSection"]["designModule"]["enrollmentInfo"][
|
172 |
+
"count"
|
173 |
+
],
|
174 |
+
}
|
175 |
+
st.write("###### Design")
|
176 |
+
st.table(design_module)
|
177 |
|
178 |
+
# TODO more modules?
|