Spaces:
Sleeping
Sleeping
from langchain.text_splitter import CharacterTextSplitter | |
import json | |
import os | |
import random | |
import re | |
from concurrent.futures import ThreadPoolExecutor, as_completed | |
import google.generativeai as genai | |
import nltk | |
import pandas as pd | |
from groq import Groq | |
from langchain.chains.summarize import load_summarize_chain | |
from langchain.docstore.document import Document | |
from langchain.prompts import PromptTemplate | |
from langchain.retrievers import BM25Retriever, EnsembleRetriever | |
from langchain.retrievers.contextual_compression import ContextualCompressionRetriever | |
from langchain.text_splitter import CharacterTextSplitter | |
from langchain.text_splitter import RecursiveCharacterTextSplitter | |
from langchain_cohere import CohereRerank | |
from langchain_community.document_loaders import Docx2txtLoader | |
from langchain_community.document_loaders import TextLoader | |
from langchain_community.document_loaders import UnstructuredCSVLoader | |
from langchain_community.document_loaders import UnstructuredExcelLoader | |
from langchain_community.document_loaders import UnstructuredHTMLLoader | |
from langchain_community.document_loaders import UnstructuredMarkdownLoader | |
from langchain_community.document_loaders import UnstructuredPDFLoader | |
from langchain_community.document_loaders import UnstructuredPowerPointLoader | |
from langchain_community.document_loaders import UnstructuredXMLLoader | |
from langchain_community.document_loaders.csv_loader import CSVLoader | |
from langchain_community.llms import Cohere | |
from langchain_community.vectorstores import Chroma | |
from langchain_core.output_parsers.openai_tools import PydanticToolsParser | |
from langchain_core.prompts import ChatPromptTemplate | |
from langchain_core.pydantic_v1 import BaseModel, Field | |
from langchain_core.runnables import RunnablePassthrough | |
from langchain_openai import ChatOpenAI | |
from typing import List | |
nltk.download('punkt') | |
def process_json_file(file_path): | |
json_data = [] | |
with open(file_path, 'r') as file: | |
for line in file: | |
try: | |
data = json.loads(line) | |
json_data.append(data) | |
except json.JSONDecodeError: | |
try: | |
data = json.loads(line[:-1]) | |
json_data.append(data) | |
except json.JSONDecodeError as e: | |
print(f"Error decoding JSON: {e}") | |
return json_data | |
from dotenv import load_dotenv | |
import os | |
load_dotenv() | |
GROQ_API_KEY = os.getenv("GROQ_API_KEY") | |
COHERE_API_KEY = os.getenv("COHERE_API_KEY") | |
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY") | |
GOOGLE_API_KEY1= os.getenv("GOOGLE_API_KEY_1") | |
GOOGLE_API_KEY= os.getenv("GOOGLE_API_KEY") | |
os.environ["COHERE_API_KEY"] = COHERE_API_KEY | |
os.environ["OPENAI_API_KEY"] = OPENAI_API_KEY | |
client = Groq( | |
api_key= GROQ_API_KEY, | |
) | |
genai.configure(api_key=GOOGLE_API_KEY1) | |
os.environ["GOOGLE_API_KEY"] = GOOGLE_API_KEY | |
from langchain_google_genai import GoogleGenerativeAIEmbeddings, ChatGoogleGenerativeAI | |
embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001") | |
llm = ChatGoogleGenerativeAI(model='gemini-pro', | |
max_output_tokens=2048, | |
temperature=0.3, | |
convert_system_message_to_human=True) | |
def extract_multi_metadata_content(texts, tests): | |
extracted_content = [] | |
precomputed_metadata = [x.metadata['source'].lower() for x in texts] | |
for idx, test in enumerate(tests): | |
temp_content = [] | |
test_terms = set(test.lower().split()) # Use set for faster lookup | |
for metadata_lower, x in zip(precomputed_metadata, texts): | |
if any(term in metadata_lower for term in test_terms): | |
temp_content.append(x.page_content) | |
if idx == 0: | |
extracted_content.append(f"Dữ liệu của {test}:\n{''.join(temp_content)}") | |
else: | |
extracted_content.append(''.join(temp_content)) | |
return '\n'.join(extracted_content) | |
def find_matching_files_in_docs_12_id(text, id): | |
folder_path = f"./user_file/{id}" | |
search_terms = [] | |
search_terms_old = [] | |
matching_index = [] | |
search_origin = re.findall(r'\b\w+\.\w+\b|\b\w+\b', text) | |
search_terms_origin = [] | |
for word in search_origin: | |
if '.' in word: | |
search_terms_origin.append(word) | |
else: | |
search_terms_origin.extend(re.findall(r'\b\w+\b', word)) | |
file_names_with_extension = re.findall(r'\b\w+\.\w+\b|\b\w+\b', text.lower()) | |
file_names_with_extension_old = re.findall(r'\b(\w+\.\w+)\b', text) | |
for file_name in search_terms_origin: | |
if "." in file_name: | |
term_position = search_terms_origin.index(file_name) | |
search_terms_old.append(file_name) | |
for file_name in file_names_with_extension_old: | |
if "." in file_name: | |
search_terms_old.append(file_name) | |
for file_name in file_names_with_extension: | |
search_terms.append(file_name) | |
clean_text_old = text | |
clean_text = text.lower() | |
search_terms_old1 = list(set(search_terms_old)) | |
for term in search_terms_old: | |
clean_text_old = clean_text_old.replace(term, '') | |
for term in search_terms: | |
clean_text = clean_text.replace(term, '') | |
words_old = re.findall(r'\b\w+\b', clean_text_old) | |
search_terms_old.extend(words_old) | |
matching_files = set() | |
matching_files_old = set() | |
for root, dirs, files in os.walk(folder_path): | |
for file in files: | |
for term in search_terms: | |
if term.lower() in file.lower(): | |
term_position = search_terms.index(term) | |
term_value = search_terms_origin[term_position] | |
matching_files.add(file) | |
matching_index.append(term_position) | |
break | |
matching_files_old1 = [] | |
matching_index.sort() | |
for x in matching_index: | |
matching_files_old1.append(search_terms_origin[x]) | |
return matching_files, matching_files_old1, search_terms_old1 | |
def convert_xlsx_to_csv(xlsx_file_path, csv_file_path): | |
df = pd.read_excel(xlsx_file_path) | |
df.to_csv(csv_file_path, index=False) | |
def save_list_CSV_id(file_list, id): | |
text = "" | |
for x in file_list: | |
if x.endswith('.xlsx'): | |
old = f"./user_file/{id}/{x}" | |
new = old.replace(".xlsx", ".csv") | |
convert_xlsx_to_csv(old, new) | |
x = x.replace(".xlsx", ".csv") | |
loader1 = CSVLoader(f"./user_file/{id}/{x}") | |
docs1 = loader1.load() | |
text += f"Dữ liệu file {x}:\n" | |
for z in docs1: | |
text += z.page_content + "\n" | |
return text | |
def merge_files(file_set, file_list): | |
"""Hàm này ghép lại các tên file dựa trên điều kiện đã cho.""" | |
merged_files = {} | |
for file_name in file_list: | |
name = file_name.split('.')[0] | |
for f in file_set: | |
if name in f: | |
merged_files[name] = f | |
break | |
return merged_files | |
def replace_keys_with_values(original_dict, replacement_dict): | |
new_dict = {} | |
for key, value in original_dict.items(): | |
if key in replacement_dict: | |
new_key = replacement_dict[key] | |
new_dict[new_key] = value | |
else: | |
new_dict[key] = value | |
return new_dict | |
def aws1_csv_id(new_dict_csv, id): | |
text = "" | |
query_all = "" | |
keyword = [] | |
for key, value in new_dict_csv.items(): | |
print(key, value) | |
query_all += value | |
keyword.append(key) | |
test = save_list_CSV_id(keyword, id) | |
text += test | |
sources = ",".join(keyword) | |
return text, query_all, sources | |
def chat_llama3(prompt_query): | |
try: | |
chat_completion = client.chat.completions.create( | |
messages=[ | |
{ | |
"role": "system", | |
"content": "Bạn là một trợ lý trung thưc, trả lời dựa trên nội dung tài liệu được cung cấp. Chỉ trả lời liên quan đến câu hỏi một cách đầy đủ chính xác, không bỏ sót thông tin." | |
}, | |
{ | |
"role": "user", | |
"content": f"{prompt_query}", | |
} | |
], | |
model="llama3-70b-8192", | |
temperature=0.0, | |
max_tokens=9000, | |
stop=None, | |
stream=False, | |
) | |
return chat_completion.choices[0].message.content | |
except Exception as error: | |
return False | |
def chat_gemini(prompt): | |
generation_config = { | |
"temperature": 0.0, | |
"top_p": 0.0, | |
"top_k": 0, | |
"max_output_tokens": 8192, | |
} | |
safety_settings = [ | |
{ | |
"category": "HARM_CATEGORY_HARASSMENT", | |
"threshold": "BLOCK_MEDIUM_AND_ABOVE" | |
}, | |
{ | |
"category": "HARM_CATEGORY_HATE_SPEECH", | |
"threshold": "BLOCK_MEDIUM_AND_ABOVE" | |
}, | |
{ | |
"category": "HARM_CATEGORY_SEXUALLY_EXPLICIT", | |
"threshold": "BLOCK_MEDIUM_AND_ABOVE" | |
}, | |
{ | |
"category": "HARM_CATEGORY_DANGEROUS_CONTENT", | |
"threshold": "BLOCK_MEDIUM_AND_ABOVE" | |
}, | |
] | |
model = genai.GenerativeModel(model_name="gemini-1.5-pro-latest", | |
generation_config=generation_config, | |
safety_settings=safety_settings) | |
convo = model.start_chat(history=[]) | |
convo.send_message(prompt) | |
return convo.last.text | |
def question_answer(question): | |
completion = chat_llama3(question) | |
if completion: | |
return completion | |
else: | |
answer = chat_gemini(question) | |
return answer | |
def check_persist_directory(id, file_name): | |
directory_path = f"./vector_database/{id}/{file_name}" | |
return os.path.exists(directory_path) | |
from langchain_community.vectorstores import FAISS | |
def check_path_exists(path): | |
return os.path.exists(path) | |
def aws1_all_id(new_dict, text_alls, id, thread_id): | |
answer = "" | |
COHERE_API_KEY1 = os.getenv("COHERE_API_KEY_1") | |
os.environ["COHERE_API_KEY"] = COHERE_API_KEY1 | |
answer_relevant = "" | |
directory = "" | |
for key, value in new_dict.items(): | |
query = value | |
keyword, keyword2, keyword3 = find_matching_files_in_docs_12_id(query, id) | |
data = extract_multi_metadata_content(text_alls, keyword) | |
if keyword: | |
file_name = next(iter(keyword)) | |
text_splitter = CharacterTextSplitter(chunk_size=3200, chunk_overlap=1500) | |
texts_data = text_splitter.split_text(data) | |
if check_persist_directory(id, file_name): | |
vectordb_query = Chroma(persist_directory=f"./vector_database/{id}/{file_name}", embedding_function=embeddings) | |
else: | |
vectordb_query = Chroma.from_texts(texts_data, | |
embedding=embeddings, | |
persist_directory=f"./vector_database/{id}/{file_name}") | |
k_1 = len(texts_data) | |
retriever = vectordb_query.as_retriever(search_kwargs={f"k": k_1}) | |
bm25_retriever = BM25Retriever.from_texts(texts_data) | |
bm25_retriever.k = k_1 | |
ensemble_retriever = EnsembleRetriever(retrievers=[bm25_retriever, retriever], | |
weights=[0.6, 0.4]) | |
docs = ensemble_retriever.get_relevant_documents(f"{query}") | |
path = f"./vector_database/FAISS/{id}/{file_name}" | |
if check_path_exists(path): | |
docsearch = FAISS.load_local(path, embeddings, allow_dangerous_deserialization=True) | |
else: | |
docsearch = FAISS.from_documents(docs, embeddings) | |
docsearch.save_local(f"./vector_database/FAISS/{id}/{file_name}") | |
docsearch = FAISS.load_local(path, embeddings, allow_dangerous_deserialization=True) | |
k_2 = len(docs) | |
compressor = CohereRerank(top_n=5) | |
retrieve3 = docsearch.as_retriever(search_kwargs={f"k": k_2}) | |
compression_retriever = ContextualCompressionRetriever( | |
base_compressor=compressor, base_retriever=retrieve3 | |
) | |
compressed_docs = compression_retriever.get_relevant_documents(f"{query}") | |
if compressed_docs: | |
data = compressed_docs[0].page_content | |
text = ''.join(map(lambda x: x.page_content, compressed_docs)) | |
prompt_document = f"Dựa vào nội dung sau:{text}. Hãy trả lời câu hỏi sau đây: {query}. Mà không thay đổi nội dung mà mình đã cung cấp" | |
answer_for = question_answer(prompt_document) | |
answer += answer_for + "\n" | |
answer_relevant = data | |
directory = file_name | |
return answer, answer_relevant, directory | |
def extract_content_between_keywords(query, keywords): | |
contents = {} | |
num_keywords = len(keywords) | |
keyword_positions = [] | |
for i in range(num_keywords): | |
keyword = keywords[i] | |
keyword_position = query.find(keyword) | |
keyword_positions.append(keyword_position) | |
if keyword_position == -1: | |
continue | |
next_keyword_position = len(query) | |
for j in range(i + 1, num_keywords): | |
next_keyword = keywords[j] | |
next_keyword_position = query.find(next_keyword) | |
if next_keyword_position != -1: | |
break | |
if i == 0: | |
content_before = query[:keyword_position].strip() | |
else: | |
content_before = query[keyword_positions[i - 1] + len(keywords[i - 1]):keyword_position].strip() | |
if i == num_keywords - 1: | |
content_after = query[keyword_position + len(keyword):].strip() | |
else: | |
content_after = query[keyword_position + len(keyword):next_keyword_position].strip() | |
content = f"{content_before} {keyword} {content_after}" | |
contents[keyword] = content | |
return contents | |
def generate_random_questions(filtered_ques_list): | |
if len(filtered_ques_list) >= 2: | |
random_questions = random.sample(filtered_ques_list, 2) | |
else: | |
random_questions = filtered_ques_list | |
return random_questions | |
def generate_question_main(loader, name_file): | |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=4500, chunk_overlap=2500) | |
texts = text_splitter.split_documents(loader) | |
question_gen = f"nội dung {name_file} : \n" | |
question_gen += texts[0].page_content | |
splitter_ques_gen = RecursiveCharacterTextSplitter( | |
chunk_size=4500, | |
chunk_overlap=2200 | |
) | |
chunks_ques_gen = splitter_ques_gen.split_text(question_gen) | |
document_ques_gen = [Document(page_content=t) for t in chunks_ques_gen] | |
llm_ques_gen_pipeline = llm | |
prompt_template_vn = """ | |
Bạn là một chuyên gia tạo câu hỏi dựa trên tài liệu và tài liệu hướng dẫn. | |
Bạn làm điều này bằng cách đặt các câu hỏi về đoạn văn bản dưới đây: | |
------------ | |
{text} | |
------------ | |
Hãy tạo ra các câu hỏi từ đoạn văn bản này.Nếu đoạn văn là tiếng Việt hãy tạo câu hỏi tiếng Việt. Nếu đoạn văn là tiếng Anh hãy tạo câu hỏi tiếng Anh. | |
Hãy chắc chắn không bỏ sót bất kỳ thông tin quan trọng nào. Và chỉ tạo với đoạn tài liệu đó tối đa 5 câu hỏi liên quan tới tài liệu cung cấp nhất.Nếu trong đoạn tài liệu có các tên liên quan đến file như demo1.pdf( nhiều file khác) thì phải kèm nó vào nội dung câu hỏi bạn tạo ra. | |
CÁC CÂU HỎI: | |
""" | |
PROMPT_QUESTIONS_VN = PromptTemplate(template=prompt_template_vn, input_variables=["text"]) | |
refine_template_vn = (""" | |
Bạn là một chuyên gia tạo câu hỏi thực hành dựa trên tài liệu và tài liệu hướng dẫn. | |
Mục tiêu của bạn là giúp người học chuẩn bị cho một kỳ thi. | |
Chúng tôi đã nhận được một số câu hỏi thực hành ở mức độ nào đó: {existing_answer}. | |
Chúng tôi có thể tinh chỉnh các câu hỏi hiện có hoặc thêm câu hỏi mới | |
(chỉ khi cần thiết) với một số ngữ cảnh bổ sung dưới đây. | |
------------ | |
{text} | |
------------ | |
Dựa trên ngữ cảnh mới, hãy tinh chỉnh các câu hỏi bằng tiếng Việt nếu đoạn văn đó cung cấp tiếng Việt. Nếu không hãy tinh chỉnh câu hỏi bằng tiếng Anh nếu đoạn đó cung cấp tiếng Anh. | |
Nếu ngữ cảnh không hữu ích, vui lòng cung cấp các câu hỏi gốc. Và chỉ tạo với đoạn tài liệu đó tối đa 5 câu hỏi liên quan tới tài liệu cung cấp nhất. Nếu trong đoạn tài liệu có các tên file thì phải kèm nó vào câu hỏi. | |
CÁC CÂU HỎI: | |
""" | |
) | |
REFINE_PROMPT_QUESTIONS = PromptTemplate( | |
input_variables=["existing_answer", "text"], | |
template=refine_template_vn, | |
) | |
ques_gen_chain = load_summarize_chain(llm=llm_ques_gen_pipeline, | |
chain_type="refine", | |
verbose=True, | |
question_prompt=PROMPT_QUESTIONS_VN, | |
refine_prompt=REFINE_PROMPT_QUESTIONS) | |
ques = ques_gen_chain.run(document_ques_gen) | |
ques_list = ques.split("\n") | |
filtered_ques_list = ["{}: {}".format(name_file, re.sub(r'^\d+\.\s*', '', element)) for element in ques_list if | |
element.endswith('?') or element.endswith('.')] | |
return generate_random_questions(filtered_ques_list) | |
def load_file(loader): | |
return loader.load() | |
def extract_data2(id): | |
documents = [] | |
directory_path = f"./user_file/{id}" | |
if not os.path.exists(directory_path) or not any( | |
os.path.isfile(os.path.join(directory_path, f)) for f in os.listdir(directory_path)): | |
return False | |
tasks = [] | |
with ThreadPoolExecutor() as executor: | |
for file in os.listdir(directory_path): | |
if file.endswith(".pdf"): | |
pdf_path = os.path.join(directory_path, file) | |
loader = UnstructuredPDFLoader(pdf_path) | |
tasks.append(executor.submit(load_file, loader)) | |
elif file.endswith('.docx') or file.endswith('.doc'): | |
doc_path = os.path.join(directory_path, file) | |
loader = Docx2txtLoader(doc_path) | |
tasks.append(executor.submit(load_file, loader)) | |
elif file.endswith('.txt'): | |
txt_path = os.path.join(directory_path, file) | |
loader = TextLoader(txt_path, encoding="utf8") | |
tasks.append(executor.submit(load_file, loader)) | |
elif file.endswith('.pptx'): | |
ppt_path = os.path.join(directory_path, file) | |
loader = UnstructuredPowerPointLoader(ppt_path) | |
tasks.append(executor.submit(load_file, loader)) | |
elif file.endswith('.csv'): | |
csv_path = os.path.join(directory_path, file) | |
loader = UnstructuredCSVLoader(csv_path) | |
tasks.append(executor.submit(load_file, loader)) | |
elif file.endswith('.xlsx'): | |
excel_path = os.path.join(directory_path, file) | |
loader = UnstructuredExcelLoader(excel_path) | |
tasks.append(executor.submit(load_file, loader)) | |
elif file.endswith('.json'): | |
json_path = os.path.join(directory_path, file) | |
loader = TextLoader(json_path) | |
tasks.append(executor.submit(load_file, loader)) | |
elif file.endswith('.md'): | |
md_path = os.path.join(directory_path, file) | |
loader = UnstructuredMarkdownLoader(md_path) | |
tasks.append(executor.submit(load_file, loader)) | |
for future in as_completed(tasks): | |
result = future.result() | |
documents.extend(result) | |
text_splitter = CharacterTextSplitter(chunk_size=4500, chunk_overlap=2500) | |
texts = text_splitter.split_documents(documents) | |
Chroma.from_documents(documents=texts, | |
embedding=embeddings, | |
persist_directory=f"./vector_database/{id}") | |
return texts | |
def generate_question(id): | |
directory_path = f"./user_file/{id}" | |
if not os.path.exists(directory_path) or not any( | |
os.path.isfile(os.path.join(directory_path, f)) for f in os.listdir(directory_path)): | |
return False | |
all_questions = [] | |
tasks = [] | |
with ThreadPoolExecutor() as executor: | |
for file in os.listdir(directory_path): | |
if file.endswith(".pdf"): | |
pdf_path = os.path.join(directory_path, file) | |
loader = UnstructuredPDFLoader(pdf_path).load() | |
tasks.append(executor.submit(generate_question_main, loader, file)) | |
elif file.endswith('.docx') or file.endswith('.doc'): | |
doc_path = os.path.join(directory_path, file) | |
loader = Docx2txtLoader(doc_path).load() | |
tasks.append(executor.submit(generate_question_main, loader, file)) | |
elif file.endswith('.txt'): | |
txt_path = os.path.join(directory_path, file) | |
loader = TextLoader(txt_path, encoding="utf8").load() | |
tasks.append(executor.submit(generate_question_main, loader, file)) | |
elif file.endswith('.pptx'): | |
ppt_path = os.path.join(directory_path, file) | |
loader = UnstructuredPowerPointLoader(ppt_path).load() | |
tasks.append(executor.submit(generate_question_main, loader, file)) | |
elif file.endswith('.json'): | |
json_path = os.path.join(directory_path, file) | |
loader = TextLoader(json_path, encoding="utf8").load() | |
tasks.append(executor.submit(generate_question_main, loader, file)) | |
elif file.endswith('.md'): | |
md_path = os.path.join(directory_path, file) | |
loader = UnstructuredMarkdownLoader(md_path).load() | |
tasks.append(executor.submit(generate_question_main, loader, file)) | |
for future in as_completed(tasks): | |
result = future.result() | |
all_questions.extend(result) | |
return all_questions | |
class Search(BaseModel): | |
queries: List[str] = Field( | |
..., | |
description="Truy vấn riêng biệt để tìm kiếm, giữ nguyên ý chính câu hỏi riêng biệt", | |
) | |
def query_analyzer(query): | |
output_parser = PydanticToolsParser(tools=[Search]) | |
system = """Bạn có khả năng đưa ra các truy vấn tìm kiếm chính xác để lấy thông tin giúp trả lời các yêu cầu của người dùng. Các truy vấn của bạn phải chính xác, không được bỏ ngắn rút gọn. | |
Nếu bạn cần tra cứu hai hoặc nhiều thông tin riêng biệt, bạn có thể làm điều đó!. Trả lời câu hỏi bằng tiếng Việt(Vietnamese), không được dùng ngôn ngữ khác""" | |
prompt = ChatPromptTemplate.from_messages( | |
[ | |
("system", system), | |
("human", "{question}"), | |
] | |
) | |
llm = ChatOpenAI(model="gpt-3.5-turbo-0125", temperature=0.0) | |
structured_llm = llm.with_structured_output(Search) | |
query_analyzer = {"question": RunnablePassthrough()} | prompt | structured_llm | |
text = query_analyzer.invoke(query) | |
return text | |
def handle_query(question, text_all, compression_retriever, id, thread_id): | |
query = question | |
x = query | |
keyword, key_words_old, key3 = find_matching_files_in_docs_12_id(query, id) | |
if keyword == set() or key_words_old == list(): | |
return "Not found file" | |
file_list = keyword | |
if file_list: | |
list_keywords2 = list(key_words_old) | |
contents1 = extract_content_between_keywords(query, list_keywords2) | |
merged_result = merge_files(keyword, list_keywords2) | |
original_dict = contents1 | |
replacement_dict = merged_result | |
new_dict = replace_keys_with_values(original_dict, replacement_dict) | |
files_to_remove = [filename for filename in new_dict.keys() if | |
filename.endswith('.xlsx') or filename.endswith('.csv')] | |
removed_files = {} | |
for filename in files_to_remove: | |
removed_files[filename] = new_dict[filename] | |
for filename in files_to_remove: | |
new_dict.pop(filename) | |
test_csv = "" | |
text_csv, query_csv, source = aws1_csv_id(removed_files, id) | |
prompt_csv = "" | |
answer_csv = "" | |
if test_csv: | |
prompt_csv = f"Dựa vào nội dung sau: {text_csv}. Hãy trả lời câu hỏi sau đây: {query_csv}.Bằng tiếng Việt" | |
answer_csv = question_answer(prompt_csv) | |
answer_document, data_relevant, source = aws1_all_id(new_dict, text_all, id, thread_id) | |
answer_all1 = answer_document + answer_csv | |
return answer_all1, data_relevant, source | |
else: | |
compressed_docs = compression_retriever.get_relevant_documents(f"{query}") | |
relevance_score_float = float(compressed_docs[0].metadata['relevance_score']) | |
if relevance_score_float <= 0.25: | |
documents1 = [] | |
for file in os.listdir(f"./user_file/{id}"): | |
if file.endswith('.csv'): | |
csv_path = f"./user_file/{id}/" + file | |
loader = UnstructuredCSVLoader(csv_path) | |
documents1.extend(loader.load()) | |
elif file.endswith('.xlsx'): | |
excel_path = f"./user_file/{id}/" + file | |
loader = UnstructuredExcelLoader(excel_path) | |
documents1.extend(loader.load()) | |
text_splitter_csv = CharacterTextSplitter.from_tiktoken_encoder(chunk_size=2200, chunk_overlap=1500) | |
texts_csv = text_splitter_csv.split_documents(documents1) | |
vectordb_csv = Chroma.from_documents(documents=texts_csv, | |
embedding=embeddings, persist_directory=f'./vector_database/csv/{thread_id}') | |
k = len(texts_csv) | |
retriever_csv = vectordb_csv.as_retriever(search_kwargs={"k": k}) | |
llm = Cohere(temperature=0) | |
compressor_csv = CohereRerank(top_n=3, model="rerank-english-v2.0") | |
compression_retriever_csv = ContextualCompressionRetriever( | |
base_compressor=compressor_csv, base_retriever=retriever_csv | |
) | |
compressed_docs_csv = compression_retriever_csv.get_relevant_documents(f"{query}") | |
file_path = compressed_docs_csv[0].metadata['source'] | |
print(file_path) | |
if file_path.endswith('.xlsx'): | |
new = file_path.replace(".xlsx", ".csv") | |
convert_xlsx_to_csv(file_path, new) | |
loader1 = CSVLoader(new) | |
else: | |
loader1 = CSVLoader(file_path) | |
docs1 = loader1.load() | |
text = " " | |
for z in docs1: | |
text += z.page_content + "\n" | |
prompt_csv = f"Dựa vào nội dung sau: {text}. Hãy trả lời câu hỏi sau đây: {query}. Bằng tiếng Việt" | |
answer_csv = question_answer(prompt_csv) | |
return answer_csv | |
else: | |
file_path = compressed_docs[0].metadata['source'] | |
if file_path.endswith(".pdf"): | |
loader = UnstructuredPDFLoader(file_path) | |
elif file_path.endswith('.docx') or file_path.endswith('doc'): | |
loader = Docx2txtLoader(file_path) | |
elif file_path.endswith('.txt'): | |
loader = TextLoader(file_path, encoding="utf8") | |
elif file_path.endswith('.pptx'): | |
loader = UnstructuredPowerPointLoader(file_path) | |
elif file_path.endswith('.xml'): | |
loader = UnstructuredXMLLoader(file_path) | |
elif file_path.endswith('.html'): | |
loader = UnstructuredHTMLLoader(file_path) | |
elif file_path.endswith('.json'): | |
loader = TextLoader(file_path) | |
elif file_path.endswith('.md'): | |
loader = UnstructuredMarkdownLoader(file_path) | |
elif file_path.endswith('.xlsx'): | |
file_path_new = file_path.replace(".xlsx", ".csv") | |
convert_xlsx_to_csv(file_path, file_path_new) | |
loader = CSVLoader(file_path_new) | |
elif file_path.endswith('.csv'): | |
loader = CSVLoader(file_path) | |
text_splitter = CharacterTextSplitter(chunk_size=3200, chunk_overlap=1500) | |
texts = text_splitter.split_documents(loader.load()) | |
k_1 = len(texts) | |
file_name = os.path.basename(file_path) | |
if check_persist_directory(id, file_name): | |
vectordb_file = Chroma(persist_directory=f"./vector_database/{id}/{file_name}", | |
embedding_function=embeddings) | |
else: | |
vectordb_file = Chroma.from_documents(texts, | |
embedding=embeddings, | |
persist_directory=f"./vector_database/{id}/{file_name}") | |
retriever_file = vectordb_file.as_retriever(search_kwargs={f"k": k_1}) | |
compressor_file = CohereRerank(top_n=5, model="rerank-english-v2.0") | |
compression_retriever_file = ContextualCompressionRetriever( | |
base_compressor=compressor_file, base_retriever=retriever_file | |
) | |
compressed_docs_file = compression_retriever_file.get_relevant_documents(f"{x}") | |
query = question | |
text = ''.join(map(lambda x: x.page_content, compressed_docs_file)) | |
prompt = f"Dựa vào nội dung sau:{text}. Hãy trả lời câu hỏi sau đây: {query}. Mà không thay đổi, chỉnh sửa nội dung mà mình đã cung cấp" | |
answer = question_answer(prompt) | |
list_relevant = compressed_docs_file[0].page_content | |
source = file_name | |
return answer, list_relevant, source | |
def handle_query_upgrade_keyword_old(query_all, text_all, id): | |
COHERE_API_KEY_2 = os.environ["COHERE_API_KEY_2"] | |
os.environ["COHERE_API_KEY"] = COHERE_API_KEY_2 | |
test = query_analyzer(query_all) | |
test_string = str(test) | |
matches = re.findall(r"'([^']*)'", test_string) | |
vectordb = Chroma(persist_directory=f"./vector_database/{id}", embedding_function=embeddings) | |
k = len(text_all) | |
retriever = vectordb.as_retriever(search_kwargs={"k": k}) | |
compressor = CohereRerank(top_n=5, model="rerank-english-v2.0") | |
compression_retriever = ContextualCompressionRetriever(base_compressor=compressor, base_retriever= retriever) | |
with ThreadPoolExecutor() as executor: | |
futures = {executor.submit(handle_query, query, text_all, compression_retriever, id, i): query for i, query in | |
enumerate(matches)} | |
results = [] | |
data_relevant = [] | |
sources = [] | |
for future in as_completed(futures): | |
try: | |
result, list_data, list_source = future.result() | |
results.append(result) | |
data_relevant.append(list_data) | |
sources.append(list_source) | |
except Exception as e: | |
print(f'An error occurred: {e}') | |
answer_all = ''.join(results) | |
prompt1 = f"Dựa vào nội dung sau:{answer_all}. Hãy trả lời câu hỏi sau đây: {query_all}. Mà không thay đổi, chỉnh sửa nội dung mà mình đã cung cấp" | |
answer1 = question_answer(prompt1) | |
return answer1, data_relevant, sources |