kmrmanish commited on
Commit
27a6856
·
1 Parent(s): 91bec1a

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +49 -0
app.py CHANGED
@@ -1,11 +1,60 @@
1
  import streamlit as st
2
  import difflib
3
  import pandas as pd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4
 
5
  # Assuming you have 'lpi_df' and 'similarity' defined before this point
6
 
7
  lpi_df = pd.read_csv('Learning_Pathway_Index.csv')
8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9
 
10
  st.title('Course Recommendation App')
11
 
 
1
  import streamlit as st
2
  import difflib
3
  import pandas as pd
4
+ import numpy as np
5
+ import matplotlib.pyplot as plt
6
+ import seaborn as sns
7
+ import plotly.express as px
8
+ import warnings
9
+ warnings.filterwarnings("ignore")
10
+ %matplotlib inline
11
+
12
+
13
+ # for text data preprocessing
14
+ import re
15
+ from nltk.corpus import stopwords
16
+ from nltk.stem.porter import PorterStemmer
17
+ from wordcloud import WordCloud
18
+ from sklearn.feature_extraction.text import TfidfVectorizer
19
+ from sklearn.metrics.pairwise import cosine_similarity
20
 
21
  # Assuming you have 'lpi_df' and 'similarity' defined before this point
22
 
23
  lpi_df = pd.read_csv('Learning_Pathway_Index.csv')
24
 
25
+ lpi_df['combined_features'] = lpi_df['Course_Learning_Material']+' '+lpi_df['Source']+' '+lpi_df['Course_Level']+' '+lpi_df['Type']+' '+lpi_df['Module']+' '+lpi_df['Difficulty_Level']+' '+lpi_df['Keywords_Tags_Skills_Interests_Categories']
26
+
27
+ combined_features = lpi_df['combined_features']
28
+
29
+ porter_stemmer = PorterStemmer()
30
+
31
+
32
+ def stemming(content):
33
+ stemmed_content = re.sub('[^a-zA-Z]',' ',content)
34
+ stemmed_content = stemmed_content.lower()
35
+ stemmed_content = stemmed_content.split()
36
+ stemmed_content = [porter_stemmer.stem(word) for word in stemmed_content if not word in stopwords.words('english')]
37
+ stemmed_content = ' '.join(stemmed_content)
38
+ return stemmed_content
39
+
40
+ combined_features = combined_features.apply(stemming)
41
+
42
+
43
+ vectorizer = TfidfVectorizer()
44
+
45
+ vectorizer.fit(combined_features)
46
+
47
+ combined_features = vectorizer.transform(combined_features)
48
+
49
+ similarity = cosine_similarity(combined_features)
50
+
51
+
52
+
53
+
54
+
55
+
56
+
57
+
58
 
59
  st.title('Course Recommendation App')
60