Spaces:
Sleeping
Sleeping
File size: 22,371 Bytes
c4254a4 e7045c6 c4254a4 e7045c6 c4254a4 cfcb5c6 c4254a4 b79e42d 5be7a4a b79e42d c4254a4 e7045c6 c4254a4 b79e42d e7045c6 b79e42d a3b3e98 b79e42d c4254a4 e7045c6 b79e42d c4254a4 663d124 c4254a4 b79e42d e7045c6 b79e42d f0e6051 c4254a4 cfcb5c6 f0e6051 cfcb5c6 c1bf01d cfcb5c6 f0e6051 cfcb5c6 c4254a4 cfcb5c6 c4254a4 cfcb5c6 f0e6051 cfcb5c6 c4254a4 b79e42d c4254a4 cfcb5c6 c4254a4 cfcb5c6 c4254a4 cfcb5c6 a3b3e98 c4254a4 b79e42d c4254a4 b79e42d c4254a4 b79e42d c4254a4 663d124 b79e42d 663d124 b79e42d 663d124 b79e42d c4254a4 b79e42d c4254a4 a3b3e98 c4254a4 b79e42d c4254a4 b79e42d c4254a4 b79e42d c4254a4 cfcb5c6 c4254a4 5be7a4a c4254a4 242b8d0 c4254a4 cfcb5c6 c4254a4 b79e42d c4254a4 cfcb5c6 c4254a4 b79e42d 5be7a4a b79e42d c4254a4 b79e42d c4254a4 b79e42d c4254a4 b79e42d c4254a4 b79e42d c4254a4 b79e42d c4254a4 e7045c6 c4254a4 b79e42d c4254a4 b79e42d c4254a4 b79e42d c4254a4 e7045c6 c4254a4 e7045c6 b79e42d c4254a4 b79e42d c4254a4 b79e42d c4254a4 b79e42d a3b3e98 b79e42d a3b3e98 b79e42d 242b8d0 b79e42d 253ea21 a3b3e98 4d32ff0 253ea21 663d124 b79e42d 5be7a4a b79e42d c4254a4 b79e42d c4254a4 b79e42d c4254a4 b79e42d c4254a4 b79e42d c4254a4 b79e42d c4254a4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 |
import streamlit as st
import streamlit_ext as ste
import openai
from pydub import AudioSegment
# from pytube import YouTube
# import pytube
import yt_dlp
import io
from pyannote.audio import Pipeline
from pyannote.audio.pipelines.utils.hook import ProgressHook
from pyannote.database.util import load_rttm
from pyannote.core import Annotation, Segment, notebook
import time
import json
import torch
import urllib.parse as urlparse
from urllib.parse import urlencode
import os
import unicodedata
import re
import matplotlib
matplotlib.use('Agg')
from matplotlib import pyplot as plt
st.set_page_config(
page_title="Speech-to-chat",
page_icon = '🌊',
layout='wide'
)
# Set your OpenAI, Hugging Face API keys
openai.api_key = st.secrets['openai']
hf_api_key = st.secrets['hf']
TRANSCRIPTION_REQUEST_LIMIT = 550
PROMPT_REQUEST_LIMIT = 20
DURATION_LIMIT = 3600 # seconds
def create_audio_stream(audio):
return io.BytesIO(audio.export(format="wav").read())
def add_query_parameter(link, params):
url_parts = list(urlparse.urlparse(link))
query = dict(urlparse.parse_qsl(url_parts[4]))
query.update(params)
url_parts[4] = urlencode(query)
return urlparse.urlunparse(url_parts)
def slugify(value, allow_unicode=False):
"""
Taken from https://github.com/django/django/blob/master/django/utils/text.py
Convert to ASCII if 'allow_unicode' is False. Convert spaces or repeated
dashes to single dashes. Remove characters that aren't alphanumerics,
underscores, or hyphens. Convert to lowercase. Also strip leading and
trailing whitespace, dashes, and underscores.
"""
value = str(value)
if allow_unicode:
value = unicodedata.normalize('NFKC', value)
else:
value = unicodedata.normalize('NFKD', value).encode('ascii', 'ignore').decode('ascii')
value = re.sub(r'[^\w\s-]', '', value.lower())
return re.sub(r'[-\s]+', '-', value).strip('-_')
def youtube_video_id(value):
"""
Examples:
- http://youtu.be/SA2iWivDJiE
- http://www.youtube.com/watch?v=_oPAwA_Udwc&feature=feedu
- http://www.youtube.com/embed/SA2iWivDJiE
- http://www.youtube.com/v/SA2iWivDJiE?version=3&hl=en_US
"""
query = urlparse.urlparse(value)
if query.hostname == 'youtu.be':
return query.path[1:]
if query.hostname in ('www.youtube.com', 'youtube.com'):
if query.path == '/watch':
p = urlparse.parse_qs(query.query)
return p['v'][0]
if query.path[:7] == '/embed/':
return query.path.split('/')[2]
if query.path[:3] == '/v/':
return query.path.split('/')[2]
# fail?
return None
@st.cache_data
def process_youtube_link2(youtube_link):
'''
uses pytube https://github.com/pytube/pytube
issue with https://github.com/pytube/pytube/issues/84
'''
try:
yt = YouTube(youtube_link)
audio_stream = yt.streams.filter(only_audio=True).first()
audio_name = audio_stream.default_filename
st.write(f"Downloaded {audio_name}")
except pytube.exceptions.AgeRestrictedError:
st.warning('Age restricted videos cannot be processed.')
st.stop()
try:
os.remove('sample.mp4')
except OSError:
pass
audio_file = audio_stream.download(filename='sample.mp4')
time.sleep(2)
audio = load_audio('sample.mp4')
st.audio(create_audio_stream(audio), format="audio/mp4", start_time=0)
return audio, audio_name
@st.cache_data
def process_youtube_link(youtube_link):
'uses yt-dlp https://github.com/yt-dlp/yt-dlp'
try:
os.remove('sample.m4a')
except OSError:
pass
ydl_opts = {
'format': 'm4a/bestaudio/best',
# ℹ️ See help(yt_dlp.postprocessor) for a list of available Postprocessors and their arguments
'outtmpl': './sample.%(ext)s'
# 'postprocessors': [{ # Extract audio using ffmpeg
# 'key': 'FFmpegExtractAudio',
# 'preferredcodec': 'm4a',
# }]
}
try:
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
info = ydl.extract_info(youtube_link, download=True)
audio_name = slugify( info['title'] )
st.write(f"Downloaded {info['title']}")
except Exception as e:
st.warning(e)
st.stop()
audio = load_audio(f'sample.m4a')
st.audio(create_audio_stream(audio), format="audio/m4a", start_time=0)
return audio, audio_name
@st.cache_data
def load_rttm_file(rttm_path):
return load_rttm(rttm_path)['stream']
def load_audio(uploaded_audio):
return AudioSegment.from_file(uploaded_audio)
if "openai_model" not in st.session_state:
st.session_state["openai_model"] = "gpt-3.5-turbo"
if "prompt_request_counter" not in st.session_state:
st.session_state["prompt_request_counter"] = 0
initial_prompt = [{"role": "system", "content": "You are helping to analyze and summarize a transcript of a conversation."},
{"role": 'user', "content": 'Please summarize briefly below transcript and inlcude a list of tags with a hash for SEO. \n{}'}]
if "messages" not in st.session_state:
st.session_state.messages = initial_prompt
st.title("Speech-to-Chat")
reddit_thread = 'https://www.reddit.com/r/dataisbeautiful/comments/17413bq/oc_speech_diarization_app_that_transcribes_audio'
with st.sidebar:
st.markdown('''
# How to Use
1. Enter a youtube link.
2. "Chat" with the video.
Example prompts:
- Which speaker spoke the most?
- Give me a list of tags with a hash for SEO based on this transcript.
''')
api_key_input = st.text_input(
"OpenAI API Key to lift request limits (Coming soon)",
disabled=True,
type="password",
placeholder="Paste your OpenAI API key here (sk-...)",
help="You can get your API key from https://platform.openai.com/account/api-keys.", # noqa: E501
value=os.environ.get("OPENAI_API_KEY", None)
or st.session_state.get("OPENAI_API_KEY", ""),
)
st.divider()
st.markdown(f'''
# About
Given an audio file or a youtube link this app will
- [x] 1. Partition the audio according to the identity of each speaker (diarization) using `pyannote` [HuggingFace Speaker Diarization api](https://huggingface.co/pyannote/speaker-diarization-3.0)
- [x] 2. Transcribe each audio segment using [OpenAi Whisper API](https://platform.openai.com/docs/guides/speech-to-text/quickstart)
- [x] 3. Set up an LLM chat with the transcript loaded into its knowledge database, so that a user can "talk" to the transcript of the audio file.
This version will only process up to first 6 minutes of an audio file due to limited resources of free tier Streamlit.io/HuggingFace Spaces.
A local version with access to a GPU can process 1 hour of audio in 1 to 5 minutes.
If you would like to use this app at scale reach out directly by creating an issue on [github🤖](https://github.com/KobaKhit/speech-to-text-app/issues)!
Rule of thumb, for this free tier hosted app it takes half the duration of the audio to complete processing, ex. g. 6 minute youtube video will take 3 minutes to diarize.
Made by [kobakhit](https://github.com/KobaKhit/speech-to-text-app)
''')
# Chat container
container_transcript_chat = st.container()
# Source Selection
option = st.radio("Select source:", [ "Use YouTube link","See Example"], index=0)
# Upload audio file
if option == "Upload an audio file":
with st.form('uploaded-file', clear_on_submit=True):
uploaded_audio = st.file_uploader("Upload an audio file (MP3 or WAV)", type=["mp3", "wav","mp4"])
st.form_submit_button()
if st.form_submit_button(): st.session_state.messages = initial_prompt
with st.expander('Optional Parameters'):
# st.session_state.rttm = st.file_uploader("Upload .rttm if you already have one", type=["rttm"])
# st.session_state.transcript_file = st.file_uploader("Upload transcipt json", type=["json"])
youtube_link = st.text_input('Youtube link of the audio sample')
if uploaded_audio is not None:
st.audio(uploaded_audio, format="audio/wav", start_time=0)
audio_name = uploaded_audio.name
audio = load_audio(uploaded_audio)
# sample_rate = st.number_input("Enter the sample rate of the audio", min_value=8000, max_value=48000)
# audio = audio.set_frame_rate(sample_rate)
# use youtube link
elif option == "Use YouTube link":
with st.form('youtube-link'):
youtube_link_raw = st.text_input("Enter the YouTube video URL:")
youtube_link = f'https://youtu.be/{youtube_video_id(youtube_link_raw)}'
if st.form_submit_button(): # reset variables on new link submit
process_youtube_link.clear()
st.session_state.messages = initial_prompt
st.session_state.rttm = None
st.session_state.transcript_file = None
st.session_state.prompt_request_counter = 0
with container_transcript_chat:
st.empty()
# with st.expander('Optional Parameters'):
# st.session_state.rttm = st.file_uploader("Upload .rttm if you already have one", type=["rttm"])
# st.session_state.transcript_file = st.file_uploader("Upload transcipt json", type=["json"])
if youtube_link_raw:
audio, audio_name = process_youtube_link(youtube_link)
# sample_rate = st.number_input("Enter the sample rate of the audio", min_value=8000, max_value=48000)
# audio = audio.set_frame_rate(sample_rate)
# except Exception as e:
# st.write(f"Error: {str(e)}")
elif option == 'See Example':
youtube_link = 'https://www.youtube.com/watch?v=TamrOZX9bu8'
audio_name = 'Stephen A. Smith has JOKES with Shannon Sharpe'
st.write(f'Loaded audio file from {youtube_link} - {audio_name} 👏😂')
if os.path.isfile('example/steve a smith jokes.mp4'):
audio = load_audio('example/steve a smith jokes.mp4')
else:
yt = YouTube(youtube_link)
audio_stream = yt.streams.filter(only_audio=True).first()
audio_file = audio_stream.download(filename='sample.mp4')
time.sleep(2)
audio = load_audio('sample.mp4')
if os.path.isfile("example/steve a smith jokes.rttm"):
st.session_state.rttm = "example/steve a smith jokes.rttm"
if os.path.isfile('example/steve a smith jokes.json'):
st.session_state.transcript_file = 'example/steve a smith jokes.json'
st.audio(create_audio_stream(audio), format="audio/mp4", start_time=0)
# Diarize
if "audio" in locals():
# create stream
duration = audio.duration_seconds
if duration > DURATION_LIMIT:
st.info(f'Only processing the first {int(DURATION_LIMIT/6/6)} minutes of the audio due to Streamlit.io resource limits.')
audio = audio[:DURATION_LIMIT*1000]
duration = audio.duration_seconds
# Perform diarization with PyAnnote
pipeline = Pipeline.from_pretrained(
"pyannote/speaker-diarization-3.0", use_auth_token=hf_api_key)
if torch.cuda.device_count() > 0: # use gpu if available
st.write('Using cuda - GPU')
pipeline.to(torch.device('cuda'))
# run the pipeline on an audio file
with st.spinner('Performing Diarization...'):
if 'rttm' in st.session_state and st.session_state.rttm != None:
st.write(f'Loading {st.session_state.rttm}')
diarization = load_rttm_file(st.session_state.rttm )
else:
# with ProgressHook() as hook:
audio_ = create_audio_stream(audio)
# diarization = pipeline(audio_, hook=hook)
diarization = pipeline(audio_)
# dump the diarization output to disk using RTTM format
with open(f'{audio_name.split(".")[0]}.rttm', "w") as f:
diarization.write_rttm(f)
st.session_state.rttm = f'{audio_name.split(".")[0]}.rttm'
# Display the diarization results
st.write("Diarization Results:")
annotation = Annotation()
sp_chunks = []
progress_text = f"Processing 1/{len(sp_chunks)}..."
my_bar = st.progress(0, text=progress_text)
counter = 0
n_tracks = len([a for a in diarization.itertracks(yield_label=True)])
for turn, _, speaker in diarization.itertracks(yield_label=True):
annotation[turn] = speaker
progress_text = f"Processing {counter}/{len(sp_chunks)}..."
my_bar.progress((counter+1)/n_tracks, text=progress_text)
counter +=1
temp = {'speaker': speaker,
'start': turn.start, 'end': turn.end, 'duration': turn.end-turn.start,
'audio': audio[turn.start*1000:turn.end*1000]}
if 'transcript_file' in st.session_state and st.session_state.transcript_file == None:
temp['audio_stream'] = create_audio_stream(audio[turn.start*1000:turn.end*1000])
sp_chunks.append(temp)
# plot
notebook.crop = Segment(-1, duration + 1)
figure, ax = plt.subplots(figsize=(10,3))
notebook.plot_annotation(annotation, ax=ax, time=True, legend=True)
figure.tight_layout()
# save to file
st.pyplot(figure)
st.write('Speakers and Audio Samples')
with st.expander('Samples', expanded=True):
for speaker in set(s['speaker'] for s in sp_chunks):
temp = max(filter(lambda d: d['speaker'] == speaker, sp_chunks), key=lambda x: x['duration'])
speak_time = sum(c['duration'] for c in filter(lambda d: d['speaker'] == speaker, sp_chunks))
rate = 100*min((speak_time, duration))/duration
speaker_summary = f"{temp['speaker']} ({round(rate)}% of video duration): start={temp['start']:.1f}s stop={temp['end']:.1f}s"
if youtube_link != None:
speaker_summary += f" {add_query_parameter(youtube_link, {'t':str(int(temp['start']))})}"
st.write(speaker_summary)
st.audio(create_audio_stream(temp['audio']))
st.divider()
# # Perform transcription with Whisper ASR
# Transcript containers
st.write(f'Transcribing using Whisper API ({TRANSCRIPTION_REQUEST_LIMIT} requests limit)...')
container_transcript_completed = st.container()
progress_text = f"Processing 1/{len(sp_chunks[:TRANSCRIPTION_REQUEST_LIMIT])}..."
my_bar = st.progress(0, text=progress_text)
# rework the loop. Simplify if Else
with st.expander('Transcript', expanded=True):
if 'transcript_file' in st.session_state and st.session_state.transcript_file != None:
with open(st.session_state.transcript_file,'r') as f:
sp_chunks_loaded = json.load(f)
for i,s in enumerate(sp_chunks_loaded):
if s['transcript'] != None:
transcript_summary = f"**{s['speaker']}** start={float(s['start']):.1f}s end={float(s['end']):.1f}s: {s['transcript']}"
if youtube_link != None and youtube_link != '':
transcript_summary += f" {add_query_parameter(youtube_link, {'t':str(int(s['start']))})}"
st.markdown(transcript_summary)
progress_text = f"Processing {i+1}/{len(sp_chunks_loaded)}..."
my_bar.progress((i+1)/len(sp_chunks_loaded), text=progress_text)
transcript_json = sp_chunks_loaded
transcript_path = f'{audio_name.split(".")[0]}-transcript.json'
else:
sp_chunks_updated = []
for i,s in enumerate(sp_chunks[:TRANSCRIPTION_REQUEST_LIMIT]):
if s['duration'] > 0.1:
audio_path = s['audio'].export('temp.wav',format='wav')
try:
transcript = openai.Audio.transcribe("whisper-1", audio_path)['text']
except Exception:
transcript = ''
pass
if transcript !='' and transcript != None:
s['transcript'] = transcript
transcript_summary = f"**{s['speaker']}** start={s['start']:.1f}s end={s['end']:.1f}s : {s['transcript']}"
if youtube_link != None:
transcript_summary += f" {add_query_parameter(youtube_link, {'t':str(int(s['start']))})}"
sp_chunks_updated.append({'speaker':s['speaker'],
'start':s['start'], 'end':s['end'],
'duration': s['duration'],'transcript': transcript})
st.markdown(transcript_summary)
progress_text = f"Processing {i+1}/{len(sp_chunks[:TRANSCRIPTION_REQUEST_LIMIT])}..."
my_bar.progress((i+1)/len(sp_chunks[:TRANSCRIPTION_REQUEST_LIMIT]), text=progress_text)
transcript_json = [dict((k, d[k]) for k in ['speaker','start','end','duration','transcript'] if k in d) for d in sp_chunks_updated]
transcript_path = f'{audio_name.split(".")[0]}-transcript.json'
st.session_state.transcript_file = transcript_path
# save the trancript file
with open(transcript_path,'w') as f:
json.dump(transcript_json, f)
# generate transcript string
transcript_string = '\n'.join([f"{s['speaker']} start={s['start']:.1f}s end={s['end']:.1f}s : {s['transcript']}" for s in transcript_json])
@st.cache_data
def get_initial_response(transcript_string):
st.session_state.messages[1]['content'] = st.session_state.messages[1]['content'].format(transcript_string)
initial_response = openai.ChatCompletion.create(
model=st.session_state["openai_model"],
messages=st.session_state.messages
)
return initial_response['choices'][0]['message']['content']
# Chat container
st.session_state.messages[1]['content'] = st.session_state.messages[1]['content'].format(transcript_string)
with container_transcript_chat:
# get a summary of transcript from ChatGpt
try:
init = get_initial_response(transcript_string)
except openai.error.APIError:
# st.stop('It is not you. It is not this app. It is OpenAI API thats having issues.')
init = ''
st.warning('OpenAI API is having issues. Hope they resolve it soon. Refer to https://status.openai.com/')
# pass transcript to initial prompt
# LLM Chat
with st.expander('Summary of the Transcribed Audio File Generated by ChatGPT', expanded = True):
# display the AI generated summary.
with st.chat_message("assistant", avatar='https://upload.wikimedia.org/wikipedia/commons/0/04/ChatGPT_logo.svg'):
st.write(init)
# chat field
with st.form("Chat",clear_on_submit=True):
prompt = st.text_input(f'Chat with the Transcript ({int(PROMPT_REQUEST_LIMIT)} prompts limit)')
st.form_submit_button()
# message list
# for message in st.session_state.messages[2:]:
# with st.chat_message(message["role"]):
# st.markdown(message["content"])
# make request if prompt was entered
if prompt:
st.session_state.prompt_request_counter += 1
if st.session_state.prompt_request_counter > PROMPT_REQUEST_LIMIT:
st.warning('Exceeded prompt limit.');
st.stop()
# append user prompt to messages
st.session_state.messages.append({"role": "user", "content": prompt})
# dislay user prompt
with st.chat_message("user"):
st.markdown(prompt)
# stream LLM Assisstant response
with st.chat_message("assistant"):
message_placeholder = st.empty()
full_response = ""
# stream response
for response in openai.ChatCompletion.create(
model=st.session_state["openai_model"],
messages=[
{"role": m["role"], "content": m["content"]}
for m in st.session_state.messages
],
stream=True,
):
full_response += response.choices[0].delta.get("content", "")
message_placeholder.markdown(full_response + "▌")
message_placeholder.markdown(full_response)
# append ai response to messages
st.session_state.messages.append({"role": "assistant", "content": full_response})
# Trancription Completed Section
with container_transcript_completed:
st.info(f'Completed transcribing')
@st.cache_data
def convert_df(string):
# IMPORTANT: Cache the conversion to prevent computation on every rerun
return string.encode('utf-8')
# encode transcript string
transcript_json_download = convert_df(json.dumps(transcript_json))
# transcript download buttons
c1_b,c2_b = st.columns((1,2))
# json button
with c1_b:
ste.download_button(
"Download transcript as json",
transcript_json_download,
transcript_path,
)
# create csv string
header = ','.join(transcript_json[0].keys()) + '\n'
for s in transcript_json:
header += ','.join([str(e) if ',' not in str(e) else '"' + str(e) + '"' for e in s.values()]) + '\n'
# csv button
transcript_csv_download = convert_df(header)
with c2_b:
ste.download_button(
"Download transcript as csv",
transcript_csv_download,
f'{audio_name.split(".")[0]}-transcript.csv'
)
|