File size: 22,371 Bytes
c4254a4
 
 
 
e7045c6
 
 
c4254a4
 
 
 
 
 
 
 
 
 
 
 
e7045c6
 
 
c4254a4
 
 
 
 
 
cfcb5c6
 
c4254a4
 
b79e42d
 
 
 
5be7a4a
 
 
b79e42d
c4254a4
 
 
 
 
 
 
 
 
 
 
 
e7045c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c4254a4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b79e42d
e7045c6
 
 
 
 
b79e42d
 
 
 
 
 
a3b3e98
 
b79e42d
 
 
 
 
 
 
 
 
 
c4254a4
e7045c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b79e42d
c4254a4
 
 
663d124
c4254a4
 
 
 
b79e42d
 
 
 
 
 
 
e7045c6
b79e42d
 
 
 
f0e6051
c4254a4
cfcb5c6
 
 
 
 
f0e6051
 
cfcb5c6
 
 
c1bf01d
cfcb5c6
 
f0e6051
 
 
 
 
 
 
 
 
 
cfcb5c6
 
c4254a4
cfcb5c6
c4254a4
cfcb5c6
f0e6051
cfcb5c6
 
 
 
c4254a4
b79e42d
c4254a4
cfcb5c6
c4254a4
cfcb5c6
c4254a4
 
 
cfcb5c6
 
 
 
a3b3e98
c4254a4
 
 
b79e42d
 
 
 
c4254a4
b79e42d
 
c4254a4
 
 
 
 
 
 
 
 
 
 
b79e42d
c4254a4
663d124
b79e42d
 
 
 
663d124
b79e42d
 
 
 
 
663d124
 
 
b79e42d
 
 
c4254a4
b79e42d
c4254a4
 
 
 
a3b3e98
c4254a4
 
b79e42d
c4254a4
 
 
 
 
 
 
 
 
 
b79e42d
c4254a4
b79e42d
c4254a4
 
cfcb5c6
c4254a4
 
 
 
5be7a4a
 
 
c4254a4
 
 
 
 
 
 
242b8d0
c4254a4
 
 
cfcb5c6
 
 
 
 
 
 
 
 
 
 
 
 
c4254a4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b79e42d
c4254a4
 
 
 
 
 
 
 
 
 
 
 
cfcb5c6
c4254a4
 
 
 
 
 
 
 
 
 
 
 
b79e42d
 
 
5be7a4a
b79e42d
c4254a4
b79e42d
c4254a4
b79e42d
c4254a4
b79e42d
 
c4254a4
 
 
b79e42d
 
c4254a4
 
b79e42d
c4254a4
 
 
 
e7045c6
c4254a4
 
 
b79e42d
c4254a4
 
 
 
 
 
 
 
 
 
b79e42d
c4254a4
 
 
 
 
 
b79e42d
c4254a4
e7045c6
 
 
 
c4254a4
e7045c6
b79e42d
c4254a4
b79e42d
c4254a4
 
b79e42d
 
 
c4254a4
b79e42d
a3b3e98
 
b79e42d
 
a3b3e98
b79e42d
 
 
 
242b8d0
b79e42d
 
253ea21
a3b3e98
4d32ff0
 
253ea21
 
663d124
 
b79e42d
 
 
 
 
 
 
 
 
5be7a4a
b79e42d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c4254a4
 
 
 
 
 
b79e42d
c4254a4
b79e42d
c4254a4
b79e42d
 
c4254a4
 
 
 
 
 
 
b79e42d
c4254a4
 
 
 
b79e42d
c4254a4
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
import streamlit as st
import streamlit_ext as ste
import openai
from pydub import AudioSegment
# from pytube import YouTube
# import pytube
import yt_dlp
import io
from pyannote.audio import Pipeline
from pyannote.audio.pipelines.utils.hook import ProgressHook
from pyannote.database.util import load_rttm
from pyannote.core import Annotation, Segment, notebook
import time
import json
import torch
import urllib.parse as urlparse
from urllib.parse import urlencode
import os

import unicodedata
import re

import matplotlib
matplotlib.use('Agg')
from matplotlib import pyplot as plt

st.set_page_config(
        page_title="Speech-to-chat",
        page_icon = '🌊',
        layout='wide'
)

# Set your OpenAI, Hugging Face API keys
openai.api_key = st.secrets['openai'] 
hf_api_key = st.secrets['hf']

TRANSCRIPTION_REQUEST_LIMIT = 550
PROMPT_REQUEST_LIMIT = 20
DURATION_LIMIT = 3600 # seconds

def create_audio_stream(audio):
    return io.BytesIO(audio.export(format="wav").read())

def add_query_parameter(link, params):
    url_parts = list(urlparse.urlparse(link))
    query = dict(urlparse.parse_qsl(url_parts[4]))
    query.update(params)

    url_parts[4] = urlencode(query)

    return urlparse.urlunparse(url_parts)

def slugify(value, allow_unicode=False):
    """
    Taken from https://github.com/django/django/blob/master/django/utils/text.py
    Convert to ASCII if 'allow_unicode' is False. Convert spaces or repeated
    dashes to single dashes. Remove characters that aren't alphanumerics,
    underscores, or hyphens. Convert to lowercase. Also strip leading and
    trailing whitespace, dashes, and underscores.
    """
    value = str(value)
    if allow_unicode:
        value = unicodedata.normalize('NFKC', value)
    else:
        value = unicodedata.normalize('NFKD', value).encode('ascii', 'ignore').decode('ascii')
    value = re.sub(r'[^\w\s-]', '', value.lower())
    return re.sub(r'[-\s]+', '-', value).strip('-_')

def youtube_video_id(value):
    """
    Examples:
    - http://youtu.be/SA2iWivDJiE
    - http://www.youtube.com/watch?v=_oPAwA_Udwc&feature=feedu
    - http://www.youtube.com/embed/SA2iWivDJiE
    - http://www.youtube.com/v/SA2iWivDJiE?version=3&hl=en_US
    """
    query = urlparse.urlparse(value)
    if query.hostname == 'youtu.be':
        return query.path[1:]
    if query.hostname in ('www.youtube.com', 'youtube.com'):
        if query.path == '/watch':
            p = urlparse.parse_qs(query.query)
            return p['v'][0]
        if query.path[:7] == '/embed/':
            return query.path.split('/')[2]
        if query.path[:3] == '/v/':
            return query.path.split('/')[2]
    # fail?
    return None

@st.cache_data
def process_youtube_link2(youtube_link):
    '''
    uses pytube https://github.com/pytube/pytube
    issue with https://github.com/pytube/pytube/issues/84
    '''
    try:
        yt = YouTube(youtube_link)
        audio_stream = yt.streams.filter(only_audio=True).first()
        audio_name = audio_stream.default_filename
        st.write(f"Downloaded {audio_name}")
    except pytube.exceptions.AgeRestrictedError:
        st.warning('Age restricted videos cannot be processed.')
        st.stop()

    try:
        os.remove('sample.mp4')
    except OSError:
        pass
    audio_file = audio_stream.download(filename='sample.mp4')
    time.sleep(2)
    audio = load_audio('sample.mp4')
    st.audio(create_audio_stream(audio), format="audio/mp4", start_time=0)
    return audio, audio_name


@st.cache_data
def process_youtube_link(youtube_link):
    'uses yt-dlp https://github.com/yt-dlp/yt-dlp'

    try:
        os.remove('sample.m4a')
    except OSError:
        pass

    ydl_opts = {
        'format': 'm4a/bestaudio/best',
        # ℹ️ See help(yt_dlp.postprocessor) for a list of available Postprocessors and their arguments
        'outtmpl': './sample.%(ext)s'
        # 'postprocessors': [{  # Extract audio using ffmpeg
        #     'key': 'FFmpegExtractAudio',
        #     'preferredcodec': 'm4a',
        # }]
    }

    try:
        with yt_dlp.YoutubeDL(ydl_opts) as ydl:
            info = ydl.extract_info(youtube_link, download=True)
            audio_name = slugify( info['title'] )
        st.write(f"Downloaded {info['title']}")
    except Exception as e:
        st.warning(e)
        st.stop()

   
    audio = load_audio(f'sample.m4a')
    st.audio(create_audio_stream(audio), format="audio/m4a", start_time=0)
    return audio, audio_name

@st.cache_data
def load_rttm_file(rttm_path):
    return load_rttm(rttm_path)['stream']


def load_audio(uploaded_audio):
    return AudioSegment.from_file(uploaded_audio)


if "openai_model" not in st.session_state:
    st.session_state["openai_model"] = "gpt-3.5-turbo"

if "prompt_request_counter" not in st.session_state:
    st.session_state["prompt_request_counter"] = 0

initial_prompt =  [{"role": "system", "content": "You are helping to analyze and summarize a transcript of a conversation."},
                   {"role": 'user', "content": 'Please summarize briefly below transcript and inlcude a list of tags with a hash for SEO. \n{}'}]
if "messages" not in st.session_state:
    st.session_state.messages = initial_prompt 
    

st.title("Speech-to-Chat")
reddit_thread = 'https://www.reddit.com/r/dataisbeautiful/comments/17413bq/oc_speech_diarization_app_that_transcribes_audio'

with st.sidebar:
    st.markdown('''
    # How to Use

      1. Enter a youtube link.
      2. "Chat" with the video.

      Example prompts:
      - Which speaker spoke the most?
      - Give me a list of tags with a hash for SEO based on this transcript.
    ''')

    api_key_input = st.text_input(
            "OpenAI API Key to lift request limits (Coming soon)",
            disabled=True,
            type="password",
            placeholder="Paste your OpenAI API key here (sk-...)",
            help="You can get your API key from https://platform.openai.com/account/api-keys.",  # noqa: E501
            value=os.environ.get("OPENAI_API_KEY", None)
            or st.session_state.get("OPENAI_API_KEY", ""),
        )

    st.divider()

    st.markdown(f'''
        # About 

        Given an audio file or a youtube link this app will
          - [x] 1. Partition the audio according to the identity of each speaker (diarization) using `pyannote` [HuggingFace Speaker Diarization api](https://huggingface.co/pyannote/speaker-diarization-3.0)
          - [x] 2. Transcribe each audio segment using [OpenAi Whisper API](https://platform.openai.com/docs/guides/speech-to-text/quickstart)
          - [x] 3. Set up an LLM chat with the transcript loaded into its knowledge database, so that a user can "talk" to the transcript of the audio file.

        This version will only process up to first 6 minutes of an audio file due to limited resources of free tier Streamlit.io/HuggingFace Spaces.
        A local version with access to a GPU can process 1 hour of audio in 1 to 5 minutes.
        If you would like to use this app at scale reach out directly by creating an issue on [github🤖](https://github.com/KobaKhit/speech-to-text-app/issues)!
        
        Rule of thumb, for this free tier hosted app it takes half the duration of the audio to complete processing, ex. g. 6 minute youtube video will take 3 minutes to diarize.

        Made by [kobakhit](https://github.com/KobaKhit/speech-to-text-app)
    ''')


# Chat container
container_transcript_chat = st.container()

# Source Selection
option = st.radio("Select source:", [ "Use YouTube link","See Example"], index=0)

# Upload audio file
if option == "Upload an audio file":
    with st.form('uploaded-file', clear_on_submit=True):
        uploaded_audio = st.file_uploader("Upload an audio file (MP3 or WAV)", type=["mp3", "wav","mp4"])
        st.form_submit_button()
        if st.form_submit_button(): st.session_state.messages = initial_prompt
    with st.expander('Optional Parameters'):
        # st.session_state.rttm  = st.file_uploader("Upload .rttm if you already have one", type=["rttm"])
        # st.session_state.transcript_file = st.file_uploader("Upload transcipt json", type=["json"])
        youtube_link = st.text_input('Youtube link of the audio sample')

    if uploaded_audio is not None:
        st.audio(uploaded_audio, format="audio/wav", start_time=0)
        audio_name = uploaded_audio.name
        audio = load_audio(uploaded_audio)
        
        # sample_rate = st.number_input("Enter the sample rate of the audio", min_value=8000, max_value=48000)
        # audio = audio.set_frame_rate(sample_rate)
        
# use youtube link
elif option == "Use YouTube link":        

    with st.form('youtube-link'):
        youtube_link_raw = st.text_input("Enter the YouTube video URL:")
        youtube_link = f'https://youtu.be/{youtube_video_id(youtube_link_raw)}'
        
        if st.form_submit_button(): # reset variables on new link submit
            process_youtube_link.clear()
            st.session_state.messages = initial_prompt
            st.session_state.rttm = None
            st.session_state.transcript_file = None
            st.session_state.prompt_request_counter = 0

            with container_transcript_chat:
                st.empty()

    # with st.expander('Optional Parameters'):
    #     st.session_state.rttm = st.file_uploader("Upload .rttm if you already have one", type=["rttm"])
    #     st.session_state.transcript_file = st.file_uploader("Upload transcipt json", type=["json"])  
    if youtube_link_raw:
        audio, audio_name = process_youtube_link(youtube_link)
        # sample_rate = st.number_input("Enter the sample rate of the audio", min_value=8000, max_value=48000)
        # audio = audio.set_frame_rate(sample_rate)
        # except Exception as e:
        #     st.write(f"Error: {str(e)}")
elif option == 'See Example':
    youtube_link = 'https://www.youtube.com/watch?v=TamrOZX9bu8'
    audio_name = 'Stephen A. Smith has JOKES with Shannon Sharpe'
    st.write(f'Loaded audio file from {youtube_link} - {audio_name} 👏😂')
    if os.path.isfile('example/steve a smith jokes.mp4'):
        audio = load_audio('example/steve a smith jokes.mp4')
    else:
        yt = YouTube(youtube_link)
        audio_stream = yt.streams.filter(only_audio=True).first()
        audio_file = audio_stream.download(filename='sample.mp4')
        time.sleep(2)
        audio = load_audio('sample.mp4')

    if os.path.isfile("example/steve a smith jokes.rttm"):
        st.session_state.rttm = "example/steve a smith jokes.rttm"
    if os.path.isfile('example/steve a smith jokes.json'):
        st.session_state.transcript_file = 'example/steve a smith jokes.json'

    st.audio(create_audio_stream(audio), format="audio/mp4", start_time=0)

# Diarize
if "audio" in locals():
    # create stream
    duration = audio.duration_seconds
    if duration > DURATION_LIMIT:
        st.info(f'Only processing the first {int(DURATION_LIMIT/6/6)} minutes of the audio due to Streamlit.io resource limits.')
        audio = audio[:DURATION_LIMIT*1000]
        duration = audio.duration_seconds
    
    
    # Perform diarization with PyAnnote
    pipeline = Pipeline.from_pretrained(
       "pyannote/speaker-diarization-3.0", use_auth_token=hf_api_key)
    if torch.cuda.device_count() > 0: # use gpu if available
        st.write('Using cuda - GPU')
        pipeline.to(torch.device('cuda'))

    # run the pipeline on an audio file
    with st.spinner('Performing Diarization...'):
        if 'rttm' in st.session_state and st.session_state.rttm != None:
            st.write(f'Loading {st.session_state.rttm}')
            diarization = load_rttm_file(st.session_state.rttm )
        else:
            # with ProgressHook() as hook:
            audio_ = create_audio_stream(audio)
            # diarization = pipeline(audio_, hook=hook)
            diarization = pipeline(audio_)
            # dump the diarization output to disk using RTTM format
            with open(f'{audio_name.split(".")[0]}.rttm', "w") as f:
                diarization.write_rttm(f)
            st.session_state.rttm = f'{audio_name.split(".")[0]}.rttm'
    
    # Display the diarization results
    st.write("Diarization Results:")
    
    annotation = Annotation()
    sp_chunks = []
    progress_text = f"Processing 1/{len(sp_chunks)}..."
    my_bar = st.progress(0, text=progress_text)
    counter = 0
    n_tracks = len([a for a in diarization.itertracks(yield_label=True)])
    for turn, _, speaker in diarization.itertracks(yield_label=True):
        annotation[turn] = speaker
        progress_text = f"Processing {counter}/{len(sp_chunks)}..."
        my_bar.progress((counter+1)/n_tracks, text=progress_text)
        counter +=1
        temp = {'speaker': speaker,
                'start': turn.start, 'end': turn.end, 'duration': turn.end-turn.start,
                'audio': audio[turn.start*1000:turn.end*1000]}
        if 'transcript_file' in st.session_state and st.session_state.transcript_file == None:
            temp['audio_stream'] = create_audio_stream(audio[turn.start*1000:turn.end*1000])
        sp_chunks.append(temp)

    # plot
    notebook.crop = Segment(-1, duration + 1)
    figure, ax = plt.subplots(figsize=(10,3))
    notebook.plot_annotation(annotation, ax=ax, time=True, legend=True)
    figure.tight_layout()
    # save to file
    st.pyplot(figure)

    st.write('Speakers and Audio Samples')
    with st.expander('Samples', expanded=True):
        for speaker in set(s['speaker'] for s in sp_chunks):
            temp = max(filter(lambda d: d['speaker'] == speaker, sp_chunks), key=lambda x: x['duration'])
            speak_time = sum(c['duration'] for c in filter(lambda d: d['speaker'] == speaker, sp_chunks))
            rate = 100*min((speak_time, duration))/duration
            speaker_summary  = f"{temp['speaker']} ({round(rate)}% of video duration): start={temp['start']:.1f}s stop={temp['end']:.1f}s"
            if youtube_link != None:
                speaker_summary += f" {add_query_parameter(youtube_link, {'t':str(int(temp['start']))})}"
            st.write(speaker_summary)
            st.audio(create_audio_stream(temp['audio']))
    
    st.divider()
    # # Perform transcription with Whisper ASR

    
    # Transcript containers
    st.write(f'Transcribing using Whisper API ({TRANSCRIPTION_REQUEST_LIMIT} requests limit)...')
    container_transcript_completed = st.container()

    progress_text = f"Processing 1/{len(sp_chunks[:TRANSCRIPTION_REQUEST_LIMIT])}..."
    my_bar = st.progress(0, text=progress_text)
    # rework the loop. Simplify if Else
    with st.expander('Transcript', expanded=True):
        if 'transcript_file' in st.session_state and st.session_state.transcript_file != None:
            with open(st.session_state.transcript_file,'r') as f:
                sp_chunks_loaded = json.load(f)
            for i,s in enumerate(sp_chunks_loaded):
                if s['transcript'] != None:
                    transcript_summary = f"**{s['speaker']}** start={float(s['start']):.1f}s end={float(s['end']):.1f}s: {s['transcript']}" 
                    if youtube_link != None and youtube_link != '':
                        transcript_summary += f" {add_query_parameter(youtube_link, {'t':str(int(s['start']))})}"

                    st.markdown(transcript_summary)
                progress_text = f"Processing {i+1}/{len(sp_chunks_loaded)}..."
                my_bar.progress((i+1)/len(sp_chunks_loaded), text=progress_text)

            transcript_json = sp_chunks_loaded
            transcript_path = f'{audio_name.split(".")[0]}-transcript.json'

        else:
            sp_chunks_updated = []
            for i,s in enumerate(sp_chunks[:TRANSCRIPTION_REQUEST_LIMIT]):
                if s['duration'] > 0.1:
                    audio_path = s['audio'].export('temp.wav',format='wav')
                    try:
                        transcript = openai.Audio.transcribe("whisper-1", audio_path)['text']
                    except Exception:
                        transcript = ''
                        pass

                    if transcript !='' and transcript != None:
                        s['transcript'] = transcript
                        transcript_summary = f"**{s['speaker']}** start={s['start']:.1f}s end={s['end']:.1f}s : {s['transcript']}" 
                        if youtube_link != None:
                            transcript_summary += f" {add_query_parameter(youtube_link, {'t':str(int(s['start']))})}"
                        
                        sp_chunks_updated.append({'speaker':s['speaker'], 
                                                'start':s['start'], 'end':s['end'],
                                                'duration': s['duration'],'transcript': transcript})
                        st.markdown(transcript_summary)

                progress_text = f"Processing {i+1}/{len(sp_chunks[:TRANSCRIPTION_REQUEST_LIMIT])}..."
                my_bar.progress((i+1)/len(sp_chunks[:TRANSCRIPTION_REQUEST_LIMIT]), text=progress_text)
                   

            transcript_json = [dict((k, d[k]) for k in ['speaker','start','end','duration','transcript'] if k in d) for d in sp_chunks_updated]
            transcript_path = f'{audio_name.split(".")[0]}-transcript.json'
            st.session_state.transcript_file = transcript_path

    # save the trancript file
    with open(transcript_path,'w') as f:
        json.dump(transcript_json, f)

    # generate transcript string
    transcript_string = '\n'.join([f"{s['speaker']} start={s['start']:.1f}s end={s['end']:.1f}s : {s['transcript']}" for s in transcript_json])
    
    @st.cache_data
    def get_initial_response(transcript_string):
        st.session_state.messages[1]['content'] = st.session_state.messages[1]['content'].format(transcript_string)
        initial_response = openai.ChatCompletion.create(
                            model=st.session_state["openai_model"],
                            messages=st.session_state.messages
                        )
        return initial_response['choices'][0]['message']['content']
    
    # Chat container
    st.session_state.messages[1]['content'] = st.session_state.messages[1]['content'].format(transcript_string)
    with container_transcript_chat:
        # get a summary of transcript from ChatGpt
        try:
            init = get_initial_response(transcript_string)
        except openai.error.APIError:
            # st.stop('It is not you. It is not this app. It is OpenAI API thats having issues.')
            init = ''
            st.warning('OpenAI API is having issues. Hope they resolve it soon. Refer to https://status.openai.com/')
        # pass transcript to initial prompt
        
        
        # LLM Chat
        with st.expander('Summary of the Transcribed Audio File Generated by ChatGPT', expanded = True):
            # display the AI generated summary.
            with st.chat_message("assistant", avatar='https://upload.wikimedia.org/wikipedia/commons/0/04/ChatGPT_logo.svg'):
                st.write(init)

            # chat field
            with st.form("Chat",clear_on_submit=True):
                prompt = st.text_input(f'Chat with the Transcript ({int(PROMPT_REQUEST_LIMIT)} prompts limit)')
                st.form_submit_button()
            
            # message list
            # for message in st.session_state.messages[2:]:
            #     with st.chat_message(message["role"]):
            #         st.markdown(message["content"])

            # make request if prompt was entered
            if prompt:
                st.session_state.prompt_request_counter += 1
                if st.session_state.prompt_request_counter > PROMPT_REQUEST_LIMIT:
                    st.warning('Exceeded prompt limit.'); 
                    st.stop()
                # append user prompt to messages
                st.session_state.messages.append({"role": "user", "content": prompt})

                # dislay user prompt
                with st.chat_message("user"):
                    st.markdown(prompt)
                
                # stream LLM Assisstant response
                with st.chat_message("assistant"):
                    message_placeholder = st.empty()
                    full_response = ""

                    # stream response
                    for response in openai.ChatCompletion.create(
                        model=st.session_state["openai_model"],
                        messages=[
                            {"role": m["role"], "content": m["content"]}
                            for m in st.session_state.messages
                        ],
                        stream=True,
                    ):
                        full_response += response.choices[0].delta.get("content", "")
                        message_placeholder.markdown(full_response + "▌")
                    message_placeholder.markdown(full_response)

                # append ai response to messages
                st.session_state.messages.append({"role": "assistant", "content": full_response})
            
    # Trancription Completed Section
    with container_transcript_completed:
        st.info(f'Completed transcribing')
       
        @st.cache_data
        def convert_df(string):
            # IMPORTANT: Cache the conversion to prevent computation on every rerun
            return string.encode('utf-8')
        # encode transcript string
        transcript_json_download = convert_df(json.dumps(transcript_json))
        # transcript download buttons
        c1_b,c2_b = st.columns((1,2))

        # json button
        with c1_b:
            ste.download_button(
                "Download transcript as json",
                transcript_json_download,
                transcript_path,
            )

        # create csv string
        header = ','.join(transcript_json[0].keys()) + '\n'
        for s in transcript_json:
            header += ','.join([str(e) if ',' not in str(e) else '"' + str(e) + '"' for e in s.values()]) + '\n'

        # csv button
        transcript_csv_download = convert_df(header)
        with c2_b:
            ste.download_button(
                "Download transcript as csv",
                transcript_csv_download,
                f'{audio_name.split(".")[0]}-transcript.csv'
            )