koey811 commited on
Commit
224b704
·
verified ·
1 Parent(s): dc29be0

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +9 -5
app.py CHANGED
@@ -2,6 +2,7 @@ import streamlit as st
2
  from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
3
  from gtts import gTTS
4
  import io
 
5
 
6
  # Load the image captioning model
7
  caption_model = pipeline("image-to-text", model="Salesforce/blip-image-captioning-base")
@@ -18,7 +19,7 @@ def generate_caption(image):
18
  def generate_story(caption):
19
  # Generate the story based on the caption
20
  input_ids = tokenizer.encode(caption, return_tensors="pt")
21
- output = text_generation_model.generate(input_ids, max_length=200, num_return_sequences=1)
22
  story = tokenizer.decode(output[0], skip_special_tokens=True)
23
  return story
24
 
@@ -33,15 +34,18 @@ def convert_to_audio(story):
33
  def main():
34
  st.title("Storytelling Application")
35
 
36
- # File uploader for the image
37
- uploaded_image = st.file_uploader("Upload an image", type=["jpg", "jpeg", "png"])
38
 
39
  if uploaded_image is not None:
 
 
 
40
  # Display the uploaded image
41
- st.image(uploaded_image, caption="Uploaded Image", use_column_width=True)
42
 
43
  # Generate the caption for the image
44
- caption = generate_caption(uploaded_image)
45
  st.subheader("Generated Caption:")
46
  st.write(caption)
47
 
 
2
  from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
3
  from gtts import gTTS
4
  import io
5
+ from PIL import Image
6
 
7
  # Load the image captioning model
8
  caption_model = pipeline("image-to-text", model="Salesforce/blip-image-captioning-base")
 
19
  def generate_story(caption):
20
  # Generate the story based on the caption
21
  input_ids = tokenizer.encode(caption, return_tensors="pt")
22
+ output = text_generation_model.generate(input_ids, max_length=100, num_return_sequences=1)
23
  story = tokenizer.decode(output[0], skip_special_tokens=True)
24
  return story
25
 
 
34
  def main():
35
  st.title("Storytelling Application")
36
 
37
+ # File uploader for the image (restricted to JPG)
38
+ uploaded_image = st.file_uploader("Upload an image", type=["jpg"])
39
 
40
  if uploaded_image is not None:
41
+ # Convert the uploaded image to PIL image
42
+ image = Image.open(uploaded_image)
43
+
44
  # Display the uploaded image
45
+ st.image(image, caption="Uploaded Image", use_column_width=True)
46
 
47
  # Generate the caption for the image
48
+ caption = generate_caption(image)
49
  st.subheader("Generated Caption:")
50
  st.write(caption)
51