controlnet / model.py
hysts's picture
hysts HF staff
Update the depth model path
722aab8
raw
history blame
20.7 kB
from __future__ import annotations
import gc
import numpy as np
import PIL.Image
import torch
from controlnet_aux.util import HWC3
from diffusers import (ControlNetModel, DiffusionPipeline,
StableDiffusionControlNetPipeline,
UniPCMultistepScheduler)
from cv_utils import resize_image
from preprocessor import Preprocessor
CONTROLNET_MODEL_IDS = {
'Openpose': 'lllyasviel/control_v11p_sd15_openpose',
'Canny': 'lllyasviel/control_v11p_sd15_canny',
'MLSD': 'lllyasviel/control_v11p_sd15_mlsd',
'scribble': 'lllyasviel/control_v11p_sd15_scribble',
'softedge': 'lllyasviel/control_v11p_sd15_softedge',
'segmentation': 'lllyasviel/control_v11p_sd15_seg',
'depth': 'lllyasviel/control_v11f1p_sd15_depth',
'NormalBae': 'lllyasviel/control_v11p_sd15_normalbae',
'lineart': 'lllyasviel/control_v11p_sd15_lineart',
'lineart_anime': 'lllyasviel/control_v11p_sd15s2_lineart_anime',
'shuffle': 'lllyasviel/control_v11e_sd15_shuffle',
'ip2p': 'lllyasviel/control_v11e_sd15_ip2p',
'inpaint': 'lllyasviel/control_v11e_sd15_inpaint',
}
def download_all_controlnet_weights() -> None:
for model_id in CONTROLNET_MODEL_IDS.values():
ControlNetModel.from_pretrained(model_id)
class Model:
def __init__(self,
base_model_id: str = 'runwayml/stable-diffusion-v1-5',
task_name: str = 'Canny'):
self.device = torch.device(
'cuda:0' if torch.cuda.is_available() else 'cpu')
self.base_model_id = ''
self.task_name = ''
self.pipe = self.load_pipe(base_model_id, task_name)
self.preprocessor = Preprocessor()
def load_pipe(self, base_model_id: str, task_name) -> DiffusionPipeline:
if base_model_id == self.base_model_id and task_name == self.task_name and hasattr(
self, 'pipe') and self.pipe is not None:
return self.pipe
model_id = CONTROLNET_MODEL_IDS[task_name]
controlnet = ControlNetModel.from_pretrained(model_id,
torch_dtype=torch.float16)
pipe = StableDiffusionControlNetPipeline.from_pretrained(
base_model_id,
safety_checker=None,
controlnet=controlnet,
torch_dtype=torch.float16)
pipe.scheduler = UniPCMultistepScheduler.from_config(
pipe.scheduler.config)
if self.device.type == 'cuda':
pipe.enable_xformers_memory_efficient_attention()
pipe.to(self.device)
torch.cuda.empty_cache()
gc.collect()
self.base_model_id = base_model_id
self.task_name = task_name
return pipe
def set_base_model(self, base_model_id: str) -> str:
if not base_model_id or base_model_id == self.base_model_id:
return self.base_model_id
del self.pipe
torch.cuda.empty_cache()
gc.collect()
try:
self.pipe = self.load_pipe(base_model_id, self.task_name)
except Exception:
self.pipe = self.load_pipe(self.base_model_id, self.task_name)
return self.base_model_id
def load_controlnet_weight(self, task_name: str) -> None:
if task_name == self.task_name:
return
if self.pipe is not None and hasattr(self.pipe, 'controlnet'):
del self.pipe.controlnet
torch.cuda.empty_cache()
gc.collect()
model_id = CONTROLNET_MODEL_IDS[task_name]
controlnet = ControlNetModel.from_pretrained(model_id,
torch_dtype=torch.float16)
controlnet.to(self.device)
torch.cuda.empty_cache()
gc.collect()
self.pipe.controlnet = controlnet
self.task_name = task_name
def get_prompt(self, prompt: str, additional_prompt: str) -> str:
if not prompt:
prompt = additional_prompt
else:
prompt = f'{prompt}, {additional_prompt}'
return prompt
@torch.autocast('cuda')
def run_pipe(
self,
prompt: str,
negative_prompt: str,
control_image: PIL.Image.Image,
num_images: int,
num_steps: int,
guidance_scale: float,
seed: int,
) -> list[PIL.Image.Image]:
if seed == -1:
seed = np.random.randint(0, np.iinfo(np.int64).max)
generator = torch.Generator().manual_seed(seed)
return self.pipe(prompt=prompt,
negative_prompt=negative_prompt,
guidance_scale=guidance_scale,
num_images_per_prompt=num_images,
num_inference_steps=num_steps,
generator=generator,
image=control_image).images
@torch.inference_mode()
def process_canny(
self,
image: np.ndarray,
prompt: str,
additional_prompt: str,
negative_prompt: str,
num_images: int,
image_resolution: int,
num_steps: int,
guidance_scale: float,
seed: int,
low_threshold: int,
high_threshold: int,
) -> list[PIL.Image.Image]:
self.preprocessor.load('Canny')
control_image = self.preprocessor(image=image,
low_threshold=low_threshold,
high_threshold=high_threshold,
detect_resolution=image_resolution)
self.load_controlnet_weight('Canny')
results = self.run_pipe(
prompt=self.get_prompt(prompt, additional_prompt),
negative_prompt=negative_prompt,
control_image=control_image,
num_images=num_images,
num_steps=num_steps,
guidance_scale=guidance_scale,
seed=seed,
)
return [control_image] + results
@torch.inference_mode()
def process_mlsd(
self,
image: np.ndarray,
prompt: str,
additional_prompt: str,
negative_prompt: str,
num_images: int,
image_resolution: int,
preprocess_resolution: int,
num_steps: int,
guidance_scale: float,
seed: int,
value_threshold: float,
distance_threshold: float,
) -> list[PIL.Image.Image]:
self.preprocessor.load('MLSD')
control_image = self.preprocessor(
image=image,
image_resolution=image_resolution,
detect_resolution=preprocess_resolution,
thr_v=value_threshold,
thr_d=distance_threshold,
)
self.load_controlnet_weight('MLSD')
results = self.run_pipe(
prompt=self.get_prompt(prompt, additional_prompt),
negative_prompt=negative_prompt,
control_image=control_image,
num_images=num_images,
num_steps=num_steps,
guidance_scale=guidance_scale,
seed=seed,
)
return [control_image] + results
@torch.inference_mode()
def process_scribble(
self,
image: np.ndarray,
prompt: str,
additional_prompt: str,
negative_prompt: str,
num_images: int,
image_resolution: int,
preprocess_resolution: int,
num_steps: int,
guidance_scale: float,
seed: int,
preprocessor_name: str,
) -> list[PIL.Image.Image]:
if preprocessor_name == 'None':
image = HWC3(image)
image = resize_image(image, resolution=image_resolution)
control_image = PIL.Image.fromarray(image)
elif preprocessor_name == 'HED':
self.preprocessor.load(preprocessor_name)
control_image = self.preprocessor(
image=image,
image_resolution=image_resolution,
detect_resolution=preprocess_resolution,
scribble=False,
)
elif preprocessor_name == 'PidiNet':
self.preprocessor.load(preprocessor_name)
control_image = self.preprocessor(
image=image,
image_resolution=image_resolution,
detect_resolution=preprocess_resolution,
safe=False,
)
self.load_controlnet_weight('scribble')
results = self.run_pipe(
prompt=self.get_prompt(prompt, additional_prompt),
negative_prompt=negative_prompt,
control_image=control_image,
num_images=num_images,
num_steps=num_steps,
guidance_scale=guidance_scale,
seed=seed,
)
return [control_image] + results
@torch.inference_mode()
def process_scribble_interactive(
self,
image_and_mask: dict[str, np.ndarray],
prompt: str,
additional_prompt: str,
negative_prompt: str,
num_images: int,
image_resolution: int,
num_steps: int,
guidance_scale: float,
seed: int,
) -> list[PIL.Image.Image]:
image = image_and_mask['mask']
image = HWC3(image)
image = resize_image(image, resolution=image_resolution)
control_image = PIL.Image.fromarray(image)
self.load_controlnet_weight('scribble')
results = self.run_pipe(
prompt=self.get_prompt(prompt, additional_prompt),
negative_prompt=negative_prompt,
control_image=control_image,
num_images=num_images,
num_steps=num_steps,
guidance_scale=guidance_scale,
seed=seed,
)
return [control_image] + results
@torch.inference_mode()
def process_softedge(
self,
image: np.ndarray,
prompt: str,
additional_prompt: str,
negative_prompt: str,
num_images: int,
image_resolution: int,
preprocess_resolution: int,
num_steps: int,
guidance_scale: float,
seed: int,
preprocessor_name: str,
) -> list[PIL.Image.Image]:
if preprocessor_name == 'None':
image = HWC3(image)
image = resize_image(image, resolution=image_resolution)
control_image = PIL.Image.fromarray(image)
elif preprocessor_name in ['HED', 'HED safe']:
safe = 'safe' in preprocessor_name
self.preprocessor.load('HED')
control_image = self.preprocessor(
image=image,
image_resolution=image_resolution,
detect_resolution=preprocess_resolution,
scribble=safe,
)
elif preprocessor_name in ['PidiNet', 'PidiNet safe']:
safe = 'safe' in preprocessor_name
self.preprocessor.load('PidiNet')
control_image = self.preprocessor(
image=image,
image_resolution=image_resolution,
detect_resolution=preprocess_resolution,
safe=safe,
)
else:
raise ValueError
self.load_controlnet_weight('softedge')
results = self.run_pipe(
prompt=self.get_prompt(prompt, additional_prompt),
negative_prompt=negative_prompt,
control_image=control_image,
num_images=num_images,
num_steps=num_steps,
guidance_scale=guidance_scale,
seed=seed,
)
return [control_image] + results
@torch.inference_mode()
def process_openpose(
self,
image: np.ndarray,
prompt: str,
additional_prompt: str,
negative_prompt: str,
num_images: int,
image_resolution: int,
preprocess_resolution: int,
num_steps: int,
guidance_scale: float,
seed: int,
preprocessor_name: str,
) -> list[PIL.Image.Image]:
if preprocessor_name == 'None':
image = HWC3(image)
image = resize_image(image, resolution=image_resolution)
control_image = PIL.Image.fromarray(image)
else:
self.preprocessor.load('Openpose')
control_image = self.preprocessor(
image=image,
image_resolution=image_resolution,
detect_resolution=preprocess_resolution,
hand_and_face=True,
)
self.load_controlnet_weight('Openpose')
results = self.run_pipe(
prompt=self.get_prompt(prompt, additional_prompt),
negative_prompt=negative_prompt,
control_image=control_image,
num_images=num_images,
num_steps=num_steps,
guidance_scale=guidance_scale,
seed=seed,
)
return [control_image] + results
@torch.inference_mode()
def process_segmentation(
self,
image: np.ndarray,
prompt: str,
additional_prompt: str,
negative_prompt: str,
num_images: int,
image_resolution: int,
preprocess_resolution: int,
num_steps: int,
guidance_scale: float,
seed: int,
preprocessor_name: str,
) -> list[PIL.Image.Image]:
if preprocessor_name == 'None':
image = HWC3(image)
image = resize_image(image, resolution=image_resolution)
control_image = PIL.Image.fromarray(image)
else:
self.preprocessor.load(preprocessor_name)
control_image = self.preprocessor(
image=image,
image_resolution=image_resolution,
detect_resolution=preprocess_resolution,
)
self.load_controlnet_weight('segmentation')
results = self.run_pipe(
prompt=self.get_prompt(prompt, additional_prompt),
negative_prompt=negative_prompt,
control_image=control_image,
num_images=num_images,
num_steps=num_steps,
guidance_scale=guidance_scale,
seed=seed,
)
return [control_image] + results
@torch.inference_mode()
def process_depth(
self,
image: np.ndarray,
prompt: str,
additional_prompt: str,
negative_prompt: str,
num_images: int,
image_resolution: int,
preprocess_resolution: int,
num_steps: int,
guidance_scale: float,
seed: int,
preprocessor_name: str,
) -> list[PIL.Image.Image]:
if preprocessor_name == 'None':
image = HWC3(image)
image = resize_image(image, resolution=image_resolution)
control_image = PIL.Image.fromarray(image)
else:
self.preprocessor.load(preprocessor_name)
control_image = self.preprocessor(
image=image,
image_resolution=image_resolution,
detect_resolution=preprocess_resolution,
)
self.load_controlnet_weight('depth')
results = self.run_pipe(
prompt=self.get_prompt(prompt, additional_prompt),
negative_prompt=negative_prompt,
control_image=control_image,
num_images=num_images,
num_steps=num_steps,
guidance_scale=guidance_scale,
seed=seed,
)
return [control_image] + results
@torch.inference_mode()
def process_normal(
self,
image: np.ndarray,
prompt: str,
additional_prompt: str,
negative_prompt: str,
num_images: int,
image_resolution: int,
preprocess_resolution: int,
num_steps: int,
guidance_scale: float,
seed: int,
preprocessor_name: str,
) -> list[PIL.Image.Image]:
if preprocessor_name == 'None':
image = HWC3(image)
image = resize_image(image, resolution=image_resolution)
control_image = PIL.Image.fromarray(image)
else:
self.preprocessor.load('NormalBae')
control_image = self.preprocessor(
image=image,
image_resolution=image_resolution,
detect_resolution=preprocess_resolution,
)
self.load_controlnet_weight('NormalBae')
results = self.run_pipe(
prompt=self.get_prompt(prompt, additional_prompt),
negative_prompt=negative_prompt,
control_image=control_image,
num_images=num_images,
num_steps=num_steps,
guidance_scale=guidance_scale,
seed=seed,
)
return [control_image] + results
@torch.inference_mode()
def process_lineart(
self,
image: np.ndarray,
prompt: str,
additional_prompt: str,
negative_prompt: str,
num_images: int,
image_resolution: int,
preprocess_resolution: int,
num_steps: int,
guidance_scale: float,
seed: int,
preprocessor_name: str,
) -> list[PIL.Image.Image]:
if preprocessor_name in ['None', 'None (anime)']:
image = HWC3(image)
image = resize_image(image, resolution=image_resolution)
control_image = PIL.Image.fromarray(image)
elif preprocessor_name in ['Lineart', 'Lineart coarse']:
coarse = 'coarse' in preprocessor_name
self.preprocessor.load('Lineart')
control_image = self.preprocessor(
image=image,
image_resolution=image_resolution,
detect_resolution=preprocess_resolution,
coarse=coarse,
)
elif preprocessor_name == 'Lineart (anime)':
self.preprocessor.load('LineartAnime')
control_image = self.preprocessor(
image=image,
image_resolution=image_resolution,
detect_resolution=preprocess_resolution,
)
if 'anime' in preprocessor_name:
self.load_controlnet_weight('lineart_anime')
else:
self.load_controlnet_weight('lineart')
results = self.run_pipe(
prompt=self.get_prompt(prompt, additional_prompt),
negative_prompt=negative_prompt,
control_image=control_image,
num_images=num_images,
num_steps=num_steps,
guidance_scale=guidance_scale,
seed=seed,
)
return [control_image] + results
@torch.inference_mode()
def process_shuffle(
self,
image: np.ndarray,
prompt: str,
additional_prompt: str,
negative_prompt: str,
num_images: int,
image_resolution: int,
num_steps: int,
guidance_scale: float,
seed: int,
preprocessor_name: str,
) -> list[PIL.Image.Image]:
if preprocessor_name == 'None':
image = HWC3(image)
image = resize_image(image, resolution=image_resolution)
control_image = PIL.Image.fromarray(image)
else:
self.preprocessor.load(preprocessor_name)
control_image = self.preprocessor(
image=image,
image_resolution=image_resolution,
)
self.load_controlnet_weight('shuffle')
results = self.run_pipe(
prompt=self.get_prompt(prompt, additional_prompt),
negative_prompt=negative_prompt,
control_image=control_image,
num_images=num_images,
num_steps=num_steps,
guidance_scale=guidance_scale,
seed=seed,
)
return [control_image] + results
@torch.inference_mode()
def process_ip2p(
self,
image: np.ndarray,
prompt: str,
additional_prompt: str,
negative_prompt: str,
num_images: int,
image_resolution: int,
num_steps: int,
guidance_scale: float,
seed: int,
) -> list[PIL.Image.Image]:
image = HWC3(image)
image = resize_image(image, resolution=image_resolution)
control_image = PIL.Image.fromarray(image)
self.load_controlnet_weight('ip2p')
results = self.run_pipe(
prompt=self.get_prompt(prompt, additional_prompt),
negative_prompt=negative_prompt,
control_image=control_image,
num_images=num_images,
num_steps=num_steps,
guidance_scale=guidance_scale,
seed=seed,
)
return [control_image] + results