Spaces:
Runtime error
Runtime error
File size: 26,979 Bytes
71ca05d cb48245 71ca05d 7e28fee 4b4923c 7e28fee 4b4923c 7e28fee 71ca05d 2626cde 71ca05d 2626cde 71ca05d 3d5d112 7e28fee 3d5d112 71ca05d 3d5d112 7e28fee 3d5d112 7e28fee 3d5d112 71ca05d 2e7178e 71ca05d 54ae4c0 3d5d112 71ca05d 3d5d112 71ca05d 3d5d112 71ca05d 3d5d112 84d72fa 3d5d112 71ca05d 2626cde 71ca05d 7e28fee 71ca05d 2626cde 71ca05d 2626cde 71ca05d 2626cde 71ca05d 2626cde 71ca05d 2626cde 71ca05d 2626cde 71ca05d 2626cde 71ca05d 2626cde 71ca05d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 |
# -*- coding: utf-8 -*-
"""SemanticSearch0_5.ipynb
Automatically generated by Colaboratory.
Original file is located at
https://colab.research.google.com/drive/1EhKhMi1ho70Fn-Uxxrp5r_zTq8GadBPp
# **MP NFTs Semantic Search using Text and Images**
I fetch MakersPlace NFTs(10K) and Index them using Faiss. Search is performed using Query embedding on the Text index or Image embedding on Image index. Below are the individual steps.
1. Fetch Makers Place Contract NFT Token ids(n ...m) meta data using Alchemy
API. Extract previwe image URLs from the response
2. Fetch Title text for each NFT. Parallell execution is used.
3. Download Clip Model(openai/clip-vit-large-patch14) from HuggingFace and instantiate TextModel and VIsion Model.
4. Create Title Text Index using Faiss
5. Generate text embeddings for Titles using Clip Text Model and add them to text index index
6. Load pre generated Image index
7. Build Gradio App for searching NFTs
8. Load Web App using Public URL and have fun
## Acknowledgements
1. Text index is built using NFT Titles only. Limited text to alpha numeric characters only.
2. This is setup is not evaluated using curated/benchmark dataset to verify
accuracy
3. Index generation and Index search is not on GPU. Only Image embedding generation is in GPU
4. GPU Memory clean up is done manually. Need fine tuning to avoid OOM errors
5. Search results in unintended images like NSFW images
"""
# Commented out IPython magic to ensure Python compatibility.
# %%capture
# !pip install gradio
# !pip install transformers
# !pip install faiss-gpu
# !pip install torch
# !pip install Pillow
# !pip install matplotlib
# !pip install nltk
# !pip install spacy
import os
import shutil
import math
import glob
import json
import pickle
import requests
import time
import re
import string
from io import BytesIO
import nltk
from nltk.stem import PorterStemmer
from nltk.stem.wordnet import WordNetLemmatizer
import spacy
import torch
from concurrent.futures import ThreadPoolExecutor
import numpy as np
from numpy import random
from PIL import Image
# from IPython import display
import matplotlib.pyplot as plt
import faiss
if 'workspace/semantic_search' in os.getcwd():
IS_HF_SPACE = False
else:
IS_HF_SPACE = True
if IS_HF_SPACE:
ROOT_FOLDER = './'
else:
ROOT_FOLDER = os.path.join("hf", "mp_art_search_1_1")
DIMENSIONS = 768
GATEWAY_URL = "https://eth-mainnet.g.alchemy.com/nft/v2/rBshNbJGutTbf2ACdQ9XyGhhc1uSolds/getNFTMetadataBatch"
IPFS_GATEWAY = 'https://ipfsgateway.makersplace.com/ipfs/'
MP_CONTRACT_ADDRESS = "0x2963ba471e265e5f51cafafca78310fe87f8e6d1"
SUPPORTED_CONTENT_TYPES = ['image/jpeg','image/png','image/gif']
IPFS_IMAGE_IDS_FILE_NAME = "ipfs_image_ids.pickle"
INDEX_FOLDER = os.path.join(ROOT_FOLDER, "indexes")
IMAGES_FOLDER = os.path.join(ROOT_FOLDER, "images")
EXAMPLES_FOLDER = os.path.join(ROOT_FOLDER, "examples")
IPFS_IMAGE_IDS_PATH = os.path.join(INDEX_FOLDER, IPFS_IMAGE_IDS_FILE_NAME)
MIN_TOKEN_ID = 1
MAX_TOKEN_ID = 20000
GATEWAY_QUERY_BATCH_SIZE = 100
VISION_MODEL_INPUT_BATCH_SIZE = 4
TEXT_MODEL_INPUT_BATCH_SIZE = 10
SEARCH_RESULTS_DISPLAY_COUNT = 4
LOG_DISPLAY_THRESHOLD = 1000
RANDOM_SEED = 7
np.random.seed(RANDOM_SEED)
# Load stop words
nltk.download('stopwords')
# Load spacy
# nlp = spacy.load('en_core_web_sm')
# def clean_directories():
# shutil.rmtree(IMAGES_FOLDER, ignore_errors=True)
# shutil.rmtree(INDEX_FOLDER, ignore_errors=True)
def create_directories():
if not os.path.exists(EXAMPLES_FOLDER):
os.mkdir(EXAMPLES_FOLDER)
if not os.path.exists(INDEX_FOLDER):
os.mkdir(INDEX_FOLDER)
# clean_directories()
create_directories()
"""# Fetch NFTs metadata"""
class FetchClass:
def __init__(self):
self.image_duplicates_count = 0
self.nft_data = np.empty((0,3), str)
self.ipfs_image_ids = set()
def fetch_image_urls(self, min_token_id):
max_toke_id = min_token_id + GATEWAY_QUERY_BATCH_SIZE
token_id_requests = []
for i in range(min_token_id, max_toke_id):
token_id_requests.append(
{
"contractAddress": MP_CONTRACT_ADDRESS,
"tokenId": f"{i}",
"tokenType": "ERC721"
}
)
payload = {
"tokens": token_id_requests,
"refreshCache": False
}
headers = {
"accept": "application/json",
"content-type": "application/json"
}
try:
responses = requests.post(GATEWAY_URL, json=payload, headers=headers)
nfts_metadata = json.loads(responses.text)
for nft_metadata in nfts_metadata:
imageUrl = nft_metadata['metadata'].get('imageUrl', None)
description = nft_metadata.get('title', None)
tokenId = nft_metadata['id'].get('tokenId', None)
if imageUrl is not None and description is not None:
ipfs_id = imageUrl.split('/')[-1]
if ipfs_id not in self.ipfs_image_ids:
self.ipfs_image_ids.add(ipfs_id)
self.nft_data = np.append(
self.nft_data,
np.array([[ipfs_id,description,tokenId]]), axis=0)
else:
self.image_duplicates_count += 1
if self.image_duplicates_count%LOG_DISPLAY_THRESHOLD == 0:
print(f"Found {self.image_duplicates_count} duplicates")
except Exception as e:
print(f"Exception calling Alchemy API {e}")
np_file_prefix = "mp_nft_data_np_array_12k.pickle"
np_file_name = f"{np_file_prefix}.npy"
np_file_path = os.path.join(INDEX_FOLDER, np_file_name)
print(np_file_path)
if os.path.exists(np_file_path):
nft_data = np.load(np_file_path)
else:
fetch_class = FetchClass()
for batch_start_index in range(
MIN_TOKEN_ID, MAX_TOKEN_ID, GATEWAY_QUERY_BATCH_SIZE):
fetch_class.fetch_image_urls(batch_start_index)
if (batch_start_index - 1)%LOG_DISPLAY_THRESHOLD == 0:
print(f"Fetched batch from {batch_start_index}")
time.sleep(0.2)
nft_data = fetch_class.nft_data
np.save(np_file_path, nft_data)
print(f"""
NFT Data Array shape: {nft_data.shape}
""")
"""# Download all NFTs images"""
img_local_paths = []
from concurrent.futures import ThreadPoolExecutor
def fetch_image(ipfs_image_id):
image_url = os.path.join(IPFS_GATEWAY,ipfs_image_id)
# file_name = f"{image_url.split('/')[-1]}_{time.time_ns()}.jpeg"
file_name = image_url.split('/')[-1]
image_local_path = os.path.join(IMAGES_FOLDER,file_name)
# print(f"{image_url} -- {file_name} -- {image_local_path}")
if not os.path.exists(image_local_path):
response = requests.get(image_url)
content_type = response.headers.get('content-type')
# print(f"content type: {content_type}")
if response.status_code and content_type in SUPPORTED_CONTENT_TYPES:
img = Image.open(BytesIO(response.content))
img.thumbnail((224, 224))
# print(img)
# img.save(image_local_path,'png')
img_byte_arr = BytesIO()
img.save(img_byte_arr, format='png')
img_byte_arr = img_byte_arr.getvalue()
fp = open(image_local_path, 'wb')
fp.write(img_byte_arr)
fp.close()
# return img
else:
print(f"HTTP Code:{response.status_code} - {content_type} - IPFS ID:{ipfs_image_id}")
# return None
img_local_paths.append(image_local_path)
# display.Image(image_local_path)
# return img_local_path
ipfs_image_ids = nft_data[:,0]
if not IS_HF_SPACE:
# fetch_image(image_urls[2])
with ThreadPoolExecutor(max_workers=32) as executor:
executor.map(fetch_image, ipfs_image_ids)
downloaded_images_count = len(img_local_paths)
print(f"Downloaded {downloaded_images_count} Images")
def fetch_image_object(ipfs_image_id):
image_url = os.path.join(IPFS_GATEWAY,ipfs_image_id)
response = requests.get(image_url)
content_type = response.headers.get('content-type')
# print(f"content type: {content_type}")
if response.status_code and content_type in SUPPORTED_CONTENT_TYPES:
img = Image.open(BytesIO(response.content))
img.thumbnail((224, 224))
# print(img)
return img
else:
print(f"HTTP Code:{response.status_code} - {content_type} - IPFS ID:{ipfs_image_id}")
return None
if not IS_HF_SPACE:
rows=3
cols=3
img_count = 0
fig, axes = plt.subplots(nrows=rows, ncols=cols, figsize=(20,15))
random_image_ids = random.randint(len(ipfs_image_ids), size=(rows*cols))
# print(random_image_ids)
random_image_ipfs_ids = [ipfs_image_ids[random_image_ids[i]] for i in range(len(random_image_ids))]
# print(random_image_ipfs_ids)
with ThreadPoolExecutor(max_workers=32) as executor:
downloaded_images=list(executor.map(fetch_image_object, random_image_ipfs_ids))
for i in range(rows):
for j in range(cols):
if img_count < len(random_image_ipfs_ids):
img = fetch_image_object(random_image_ipfs_ids[img_count])
img_array = np.asarray(downloaded_images[img_count])
axes[i, j].imshow(img_array)
img_count+=1
"""# Clean NFT title Text"""
def clean_string(text, stem="None"):
final_string = ""
text = re.sub(r"[^a-zA-Z0-9 ]", "", text)
# Make lower
text = text.lower()
# Remove line breaks
text = re.sub(r'\n', '', text)
# Remove puncuation
translator = str.maketrans('', '', string.punctuation)
text = text.translate(translator)
# Remove stop words
text = text.split()
useless_words = nltk.corpus.stopwords.words("english")
useless_words = useless_words + ['hi', 'im']
text_filtered = [word for word in text if not word in useless_words]
# Remove numbers
# text_filtered = [re.sub(r'\w*\d\w*', '', w) for w in text_filtered]
# Stem or Lemmatize
if stem == 'Stem':
stemmer = PorterStemmer()
text_stemmed = [stemmer.stem(y) for y in text_filtered]
elif stem == 'Lem':
lem = WordNetLemmatizer()
text_stemmed = [lem.lemmatize(y) for y in text_filtered]
elif stem == 'Spacy':
text_filtered = nlp(' '.join(text_filtered))
text_stemmed = [y.lemma_ for y in text_filtered]
else:
text_stemmed = text_filtered
partial_string = text_stemmed[0:60]
final_string = ' '.join(partial_string)
return final_string
"""# 3 - Download Clip Model"""
from transformers import CLIPModel, CLIPProcessor, CLIPTokenizer, CLIPTextModelWithProjection, CLIPVisionModelWithProjection, CLIPImageProcessor, CLIPTextModel, CLIPVisionModel, TFCLIPTextModel, TFCLIPVisionModel
clip_model_id = "openai/clip-vit-large-patch14"
clip_model = CLIPModel.from_pretrained(clip_model_id)
clip_processor = CLIPProcessor.from_pretrained(clip_model_id)
text_model = CLIPTextModel.from_pretrained(clip_model_id)
text_projection_model = CLIPTextModelWithProjection.from_pretrained(clip_model_id)
tokenizer = CLIPTokenizer.from_pretrained(clip_model_id)
vision_model = CLIPVisionModel.from_pretrained(clip_model_id)
vision_projection_model = CLIPVisionModelWithProjection.from_pretrained(clip_model_id)
image_processor = CLIPImageProcessor.from_pretrained(clip_model_id)
# device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
if torch.backends.mps.is_available():
device = torch.device("mps")
x = torch.ones(1, device=device)
print(x)
else:
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
clip_model.to(device)
def get_text_embeds(queries):
inputs = tokenizer(queries, padding=True, return_tensors="pt")
outputs = text_model(**inputs)
return outputs.pooler_output.detach().numpy()
def get_image_embeds(images):
inputs = image_processor(images=images, return_tensors="pt")
outputs = vision_model(**inputs)
return outputs.pooler_output.detach().numpy()
def get_clip_embeds(
text = [''],
images = np.zeros(shape=[224,224,3], dtype=float)):
inputs = clip_processor(
text=text,
images=images,
return_tensors="pt",
padding=True)
inputs.to(device)
outputs = clip_model(**inputs)
return (
outputs.text_embeds.to(torch.device("cpu")).detach().numpy(),
outputs.image_embeds.to(torch.device("cpu")).detach().numpy())
def get_text_projection_embeds(queries):
inputs = tokenizer(queries, padding=True, return_tensors="pt")
outputs = text_projection_model(**inputs)
return outputs.text_embeds.detach().numpy()
def get_image_projection_embeds(images):
inputs = image_processor(images=images, return_tensors="pt")
outputs = vision_projection_model(**inputs)
return outputs.image_embeds.detach().numpy()
text = ['photo of a cat']
images = [fetch_image_object(ipfs_image_ids[0])]
text_model_embeds = get_text_embeds(text)
print(text_model_embeds.shape)
vision_model_embeds = get_image_embeds(images)
print(vision_model_embeds.shape)
clip_text_embeds, clip_image_embeds = get_clip_embeds(text, images)
print(f"{clip_text_embeds.shape}, {clip_image_embeds.shape}")
print(f"Text embeds equal {np.array_equal(text_model_embeds, clip_text_embeds)}")
print(f"Vision embeds equal {np.array_equal(vision_model_embeds, clip_image_embeds)}")
# print(text_model_embeds)
# print(clip_text_embeds)
clip_text_embeds_empty_image, clip_image_embeds_empty_image = get_clip_embeds(text=text)
# print(f"{clip_text_embeds_empty_image.shape}, {clip_image_embeds_empty_image.shape}")
print(f"Text embeds with empty image equal {np.array_equal(clip_text_embeds_empty_image, clip_text_embeds)}")
clip_text_embeds_empty_text, clip_image_embeds_empty_text = get_clip_embeds(images=images)
# print(f"{clip_text_embeds_empty_text.shape}, {clip_image_embeds_empty_text.shape}")
print(f"Image embeds with empty image equal {np.array_equal(clip_image_embeds_empty_text, clip_image_embeds)}")
text_projection_embeds = get_text_projection_embeds(text)
# print(f"Text projection embeds shape: {text_projection_embeds.shape}")
print(f"Text embeds Projected & Normal {np.array_equal(text_projection_embeds, text_model_embeds)}")
image_projection_embeds = get_image_projection_embeds(images)
# print(f"Image projection embeds shape: {image_projection_embeds.shape}")
print(f"Image embeds Projected & Normal {np.array_equal(image_projection_embeds, vision_model_embeds)}")
print(f"Text embeds Projected & Combined {np.array_equal(text_projection_embeds, clip_text_embeds)}")
print(f"Image embeds Projected & Combined {np.array_equal(image_projection_embeds, clip_image_embeds)}")
# print(text_projection_embeds)
# print(clip_text_embeds)
TEXT_MODEL_INPUT_BATCH_SIZE = 450
storage = "Flat"
index_name = f"IDMap,{storage}"
text_index = faiss.index_factory(DIMENSIONS, f"{index_name}")
image_index = faiss.index_factory(DIMENSIONS, f"{index_name}")
combined_Index = faiss.index_factory(DIMENSIONS, f"{index_name}")
content_ids_map = {}
banned_token_ids = {
1185 # hash special charaters which is crashing Tokenizer
}
def build_index():
nfts_count = 0
text_batch = []
ipfs_ids = []
embeds_count = 0
batches = np.array_split(nft_data, TEXT_MODEL_INPUT_BATCH_SIZE)
for nft_data_batch in batches:
cleaned_text = []
images = []
ipfs_ids_hashes = []
title_text_batch = nft_data_batch[:,1].tolist()
batch_length = len(title_text_batch)
try:
# print(f"Batch length: {batch_length}")
for i in range(batch_length):
token_id = int(nft_data_batch[i][2])
if token_id not in banned_token_ids:
ipfs_id = nft_data_batch[i][0]
ipfs_id_hash = hash(ipfs_id)
ipfs_ids_hashes.append(ipfs_id_hash)
content_ids_map[ipfs_id_hash] = ipfs_id
cleaned_string = clean_string(title_text_batch[i])
cleaned_text.append(cleaned_string)
image_local_path = os.path.join(IMAGES_FOLDER,nft_data_batch[i][0])
images.append(get_reshaped_image(image_local_path))
if len(cleaned_text) > 0:
text_embeds, image_embeds = get_clip_embeds(text=cleaned_text, images=images)
text_index.add_with_ids(text_embeds, np.array(ipfs_ids_hashes))
image_index.add_with_ids(image_embeds, np.array(ipfs_ids_hashes))
except Exception as e:
print(f"""
Text : {nft_data_batch} - cleaned: {cleaned_text}
IPFS Hashes: {ipfs_id_hash}
exception: {e}
""")
embeds_count+=batch_length
print(f"Created embeds for {embeds_count} descriptions")
# nfts_count+=len(nft_data_batch)
# print(f"Completed indexing {nfts_count} NFTs")
index_file_prefix = index_name.replace(',', '_')
text_index_file_name = f"{index_file_prefix}_text.index"
image_index_file_name = f"{index_file_prefix}_image.index"
text_index_file_path = os.path.join(INDEX_FOLDER, text_index_file_name)
image_index_file_path = os.path.join(INDEX_FOLDER, image_index_file_name)
if os.path.exists(text_index_file_path):
text_index = faiss.read_index(text_index_file_path)
image_index = faiss.read_index(image_index_file_path)
else:
build_index()
faiss.write_index(text_index, text_index_file_path)
faiss.write_index(image_index, image_index_file_path)
# build_index()
# faiss.write_index(text_index, text_index_file_path)
# faiss.write_index(image_index, image_index_file_path)
id_map_file_name = f"{index_file_prefix}_ids.pickle"
id_map_path = os.path.join(INDEX_FOLDER, id_map_file_name)
if os.path.exists(id_map_path):
with open(id_map_path, 'rb') as f:
content_ids_map = pickle.load(f)
else:
with open(id_map_path, 'wb') as f:
pickle.dump(content_ids_map, f)
# with open(id_map_path, 'wb') as f:
# pickle.dump(content_ids_map, f)
print(f"Text Index Size: {text_index.ntotal}")
print(f"Image Index Size: {image_index.ntotal}")
print(f"Ids Size: {len(content_ids_map)}")
"""# Utils"""
def download_images_parallely(ipfs_ids):
with ThreadPoolExecutor(max_workers=18) as executor:
downloaded_images = list(executor.map(fetch_image_object, ipfs_ids))
return downloaded_images
def search_using_text(text_q_index, text_strings):
text_embeds,_ = get_clip_embeds(text=text_strings)
# print(f"Text EMbeds : {text_embeds}")
distances, id_hashes = text_q_index.search(text_embeds, SEARCH_RESULTS_DISPLAY_COUNT)
# print(id_hashes)
return (distances.flatten(),id_hashes.flatten())
def search_using_images(image_q_index, search_images):
# reshaped_images = get_reshaped_image(search_images)
_, image_embeds = get_clip_embeds(images=search_images)
# print(f"Image_embeds : {image_embeds}")
distances, id_hashes = image_q_index.search(image_embeds, SEARCH_RESULTS_DISPLAY_COUNT)
return (distances.flatten(),id_hashes.flatten())
def read_ipfs_image_ids(image_ids_path):
if os.path.exists(image_ids_path):
with open(image_ids_path, 'rb') as f:
return pickle.load(f)
else:
return set()
"""# Gradio Image search App"""
import gradio as gr
print(f"Text Index size: {text_index.ntotal}")
print(f"Image Index size: {image_index.ntotal}")
print(f"Ids size: {len(content_ids_map)}")
def search_images_by_image(query_image):
return search_images('', query_image)
def search_images_by_text(query_text):
return search_images(query_text, None)
def search_images(query_text, query_image):
images_to_download = []
# print(f"Received {query_text}:{query_image}")
if len(query_text) > 0:
text_distances, text_search_results = search_using_text(text_index, [query_text])
for image_hash in text_search_results:
images_to_download.append(content_ids_map[image_hash])
img_distances, img_search_results = search_using_text(image_index, [query_text])
for image_hash in img_search_results:
images_to_download.append(content_ids_map[image_hash])
elif query_image is not None:
# distances, search_results = search_using_images(image_index, [query_image])
# # print(f"Search results: {search_results}")
# for image_hash in search_results:
# images_to_download.append(content_ids_map[image_hash])
text_distances, text_search_results = search_using_images(text_index, [query_image])
for image_hash in text_search_results:
images_to_download.append(content_ids_map[image_hash])
img_distances, img_search_results = search_using_images(image_index, [query_image])
for image_hash in img_search_results:
images_to_download.append(content_ids_map[image_hash])
# print(f"{text_search_results} \n. {img_search_results}")
# text_distances.extend(img_distances)
distances = list(text_distances) + list( img_distances)
# text_search_results.extend(img_search_results)
search_results = list(text_search_results) + list(img_search_results)
# print(f"Images to Download: {images_to_download}")
download_images = download_images_parallely(images_to_download)
# print(f"search_results: {search_results}")
# print(f"Images to download: {images_to_download}")
image_objects = []
for i in range(len(search_results)):
image_id = content_ids_map.get(search_results[i], None)
if image_id is not None:
# local_path = os.path.join(IMAGES_FOLDER, image_id)
image_objects.append(download_images[i])
else:
image_objects.append('https://ipfsgateway.makersplace.com/ipfs/QmNLgZQihgo1BpngQ9F6Tn89n4QC6nrnYAkv9fFza6C1wT')
for i in range(len(distances)):
distance_rounded = round(float(distances[i]),2)
link_html = f"<u><a href='{os.path.join(IPFS_GATEWAY,content_ids_map[search_results[i]]) }' target='_blank' rel='noopener noreferrer'>Link</a></u> "
diatance_html = f"Distance: {distance_rounded}"
image_objects.append(f"{diatance_html} - {link_html}")
# image_objects.append(query_text, query_image)
return image_objects
example_images = [f"{EXAMPLES_FOLDER}/e{n}.jpeg" for n in range(4)]
example_text = ["surrealism art","3d art", "psychedelic art","Glitch Art"] #,"Photo of a Unicorn"
examples_queries = [example_images, example_text]
# print(examples_queries)
outputs = []
with gr.Blocks() as demo:
gr.Markdown(value = '# Makers Place NFTs search')
with gr.Row():
with gr.Column(scale=0.5):
query_text = gr.Textbox(label="Text", value="")
query_image = gr.Image(label="Image")
search_btn = gr.Button("Search")
examples_text_display=gr.Examples(
examples=example_text,
inputs=query_text
)
examples_image_display=gr.Examples(
examples=example_images,
inputs=query_image
)
with gr.Column(scale=10):
with gr.Row():
gr.HTML(value="<font size='+3'>Image Index Results</font>")
with gr.Row():
with gr.Column(min_width=224):
img_result_0_image = gr.Image(label="img_result_0_image") # type="pil",
img_result_0_label = gr.HTML(value = '-')
img_result_0_btn = gr.Button("Related Images")
with gr.Column(min_width=224):
img_result_1_image = gr.Image(label="img_result_1_image")
img_result_1_label = gr.HTML(value = '-')
img_result_1_btn = gr.Button("Related Images")
with gr.Column(min_width=224):
img_result_2_image = gr.Image(label="img_result_2_image")
img_result_2_label = gr.HTML(value = '-')
img_result_2_btn = gr.Button("Related Images")
with gr.Column(min_width=224):
img_result_3_image = gr.Image(label="img_result_3_image")
img_result_3_label = gr.HTML(value = '-')
img_result_3_btn = gr.Button("Related Images")
with gr.Row():
gr.HTML(value="<br><br> <font size='+3'>Text Index Results</font>")
with gr.Row():
with gr.Column(min_width=224):
result_0_image = gr.Image(label="result_0_image") # type="pil",
result_0_label = gr.HTML(value = '-')
result_0_btn = gr.Button("Related Images")
with gr.Column(min_width=224):
result_1_image = gr.Image(label="result_1_image")
result_1_label = gr.HTML(value = '-')
result_1_btn = gr.Button("Related Images")
with gr.Column(min_width=224):
result_2_image = gr.Image(label="result_2_image")
result_2_label = gr.HTML(value = '-')
result_2_btn = gr.Button("Related Images")
with gr.Column(min_width=224):
result_3_image = gr.Image(label="result_3_image")
result_3_label = gr.HTML(value = '-')
result_3_btn = gr.Button("Related Images")
inputs = [query_text, query_image]
buttons = [
result_0_btn,result_1_btn,result_2_btn,result_3_btn,
img_result_0_btn,img_result_1_btn,img_result_2_btn,img_result_3_btn,
]
labels = [
result_0_label,result_1_label,result_2_label,result_3_label,
img_result_0_label,img_result_1_label,img_result_2_label,img_result_3_label,
]
images = [
result_0_image,result_1_image,result_2_image,result_3_image,
img_result_0_image,img_result_1_image,img_result_2_image,img_result_3_image
]
outputs = images + labels
search_btn.click(fn=search_images, inputs=inputs, outputs=outputs)
for i in range(len(buttons)):
buttons[i].click(fn=search_images_by_image,
inputs=images[i], outputs=outputs)
demo.queue(concurrency_count=2, max_size=5)
demo.launch(debug=True)
demo.close()
# file_name = "mp_nft_data_np_array_12k.pickle"
# file_path = os.path.join(INDEX_FOLDER, file_name)
# np.save(file_path, fetch_class.text_descriptions)
# shutil.make_archive(f"{INDEX_FOLDER}", 'tar', INDEX_FOLDER) |