kongkip's picture
Returning mask as it is
cf9d3c1
raw
history blame
1.27 kB
from turtle import title
import gradio as gr
from huggingface_hub import from_pretrained_keras
import tensorflow as tf
import numpy as np
from PIL import Image
import io
import base64
model = tf.keras.models.load_model("./tf_model.h5")
def predict(image):
img = np.array(image)
im = tf.image.resize(img, (128, 128))
im = tf.cast(im, tf.float32) / 255.0
pred_mask = model.predict(im[tf.newaxis, ...])
return pred_mask[0]
title = '<h1 style="text-align: center;">Segment Pets</h1>'
description = """
## About
This space demonstrates the use of a semantic segmentation model to segment pets and classify them
according to the pixels.
## πŸš€ To run
Upload a pet image and hit submit or select one from the given examples
"""
inputs = gr.inputs.Image(label="Upload a pet image", type = 'pil', optional=False)
outputs = [
gr.outputs.Image(label="Segmentation")
# , gr.outputs.Textbox(type="auto",label="Pet Prediction")
]
examples = [
"./examples/cat_1.jpg",
"./examples/cat_2.jpg",
"./examples/dog_1.jpg",
"./examples/dog_2.jpg",
]
interface = gr.Interface(fn=predict,
inputs=inputs,
outputs=outputs,
title = title,
description=description,
examples=examples
)
interface.launch()