Johannes commited on
Commit
ebf587a
·
1 Parent(s): f9a9025
Files changed (3) hide show
  1. app.py +105 -0
  2. bruce.png +0 -0
  3. requirements.txt +3 -0
app.py ADDED
@@ -0,0 +1,105 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import torch
3
+ import kornia as K
4
+
5
+ import cv2
6
+ import numpy as np
7
+ import matplotlib
8
+ import matplotlib.pyplot as plt
9
+ matplotlib.use('Agg')
10
+ from scipy.cluster.vq import kmeans,vq,whiten
11
+
12
+ def get_coordinates_from_mask(mask_in):
13
+ x_y = np.where(mask_in != [0,0,0,255])[:2]
14
+ x_y = np.column_stack((x_y[1], x_y[0]))
15
+ x_y = np.float32(x_y)
16
+ centroids,_ = kmeans(x_y,4)
17
+ centroids = np.int64(centroids)
18
+
19
+ return centroids
20
+
21
+ def get_top_bottom_coordinates(coords: list[list[int,int]]) -> (list[int,int],list[int,int]):
22
+ top_coord = min(coords, key=lambda x : x[1])
23
+ bottom_coord = max(coords, key=lambda x : x[1])
24
+
25
+ return top_coord, bottom_coord
26
+
27
+
28
+ def sort_centroids_clockwise(centroids: np.ndarray):
29
+ c_list = centroids.tolist()
30
+ c_list.sort(key = lambda y : y[0])
31
+
32
+ left_coords = c_list[:2]
33
+ right_coords = c_list[-2:]
34
+
35
+ top_left, bottom_left = get_top_bottom_coordinates(left_coords)
36
+ top_right, bottom_right = get_top_bottom_coordinates(right_coords)
37
+
38
+ return top_left, top_right, bottom_right, bottom_left
39
+
40
+
41
+ def infer(image_input, dst_height:str, dst_width:str):
42
+ image_in = image_input["image"]
43
+ mask_in = image_input["mask"]
44
+ torch_img = K.image_to_tensor(image_in)
45
+
46
+ centroids = get_coordinates_from_mask(mask_in)
47
+ ordered_src_coords = sort_centroids_clockwise(centroids)
48
+ # the source points are the region to crop corners
49
+ points_src = torch.tensor([list(ordered_src_coords)], dtype=torch.float32)
50
+
51
+ # the destination points are the image vertexes
52
+ h, w = dst_height, dst_width # destination size
53
+ points_dst = torch.tensor([[
54
+ [0., 0.], [w - 1., 0.], [w - 1., h - 1.], [0., h - 1.],
55
+ ]], dtype=torch.float32)
56
+
57
+ # compute perspective transform
58
+ M: torch.tensor = K.geometry.get_perspective_transform(points_src, points_dst)
59
+
60
+ # warp the original image by the found transform
61
+ torch_img = torch.stack([torch_img],)
62
+ img_warp: torch.tensor = K.geometry.warp_perspective(torch_img.float(), M, dsize=(h, w))
63
+
64
+
65
+ # convert back to numpy
66
+ img_np = K.tensor_to_image(torch_img.byte())
67
+ img_warp_np: np.ndarray = K.tensor_to_image(img_warp.byte())
68
+
69
+ # draw points into original image
70
+ for i in range(4):
71
+ center = tuple(points_src[0, i].long().numpy())
72
+ img_np = cv2.circle(img_np.copy(), center, 5, (0, 255, 0), -1)
73
+
74
+ # create the plot
75
+ fig, axs = plt.subplots(1, 2, figsize=(16, 10))
76
+ axs = axs.ravel()
77
+
78
+ axs[0].axis('off')
79
+ axs[0].set_title('image source')
80
+ axs[0].imshow(img_np)
81
+
82
+ axs[1].axis('off')
83
+ axs[1].set_title('image destination')
84
+ axs[1].imshow(img_warp_np)
85
+
86
+ return fig
87
+
88
+
89
+ description = """Homography Warping"""
90
+
91
+ example_mask = np.empty((327,600,4))
92
+ example_mask[:] = [0,0,0,255]
93
+ example_image_dict = {"image": "bruce.png", "mask": example_mask}
94
+
95
+ Iface = gr.Interface(
96
+ fn=infer,
97
+ inputs=[gr.components.Image(tool="sketch"),
98
+ gr.components.Textbox(label="Destination Height"),
99
+ gr.components.Textbox(label="Destination Width"),
100
+ ],
101
+ outputs=gr.components.Plot(),
102
+ examples=[["bruce.png", example_mask], "64", "128"],
103
+ title="Homography Warping",
104
+ description=description,
105
+ ).launch()
bruce.png ADDED
requirements.txt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ kornia
2
+ opencv-python
3
+ matplotlib