Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
import streamlit as st | |
import kornia | |
import torch | |
from torch import nn | |
from torchvision.transforms import functional as F | |
from torchvision.utils import make_grid | |
from streamlit_ace import st_ace | |
from PIL import Image | |
IS_LOCAL = False # Change this | |
def set_transform(content): | |
try: | |
transform = eval(content, {"kornia": kornia, "nn": nn}, None) | |
except Exception as e: | |
st.write(f"There was an error: {e}") | |
transform = nn.Sequential() | |
return transform | |
st.set_page_config(page_title="Kornia Augmentations Demo", layout="wide") | |
st.markdown("# Kornia Augmentations Demo") | |
st.sidebar.markdown( | |
"[Kornia](https://github.com/kornia/kornia) is a *differentiable* computer vision library for PyTorch." | |
) | |
uploaded_file = st.sidebar.file_uploader("Choose a file", type=['png', 'jpg', 'jpeg']) | |
if uploaded_file is not None: | |
im = Image.open(uploaded_file) | |
else: | |
im = Image.open("./images/pretty_bird.jpg") | |
scaler = int(im.height / 2) | |
st.sidebar.image(im, caption="Input Image", width=256) | |
image = F.pil_to_tensor(im).float() / 255 | |
# batch size is just for show | |
batch_size = st.sidebar.slider("batch_size", min_value=4, max_value=16, value=8) | |
gpu = st.sidebar.checkbox("Use GPU!", value=True) | |
if not gpu: | |
st.sidebar.markdown("With Kornia you do ops on the GPU!") | |
device = torch.device("cpu") | |
else: | |
if not IS_LOCAL: | |
st.sidebar.markdown("(GPU Not available on hosted demo, try on your local!)") | |
# Credits | |
st.sidebar.caption("Demo made by [Ceyda Cinarel](https://linktr.ee/ceydai)") | |
st.sidebar.markdown("Clone [Code](https://github.com/cceyda/kornia-demo)") | |
device = torch.device("cpu") | |
else: | |
st.sidebar.markdown("Running on GPU~") | |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") | |
predefined_transforms = [ | |
""" | |
nn.Sequential( | |
kornia.augmentation.RandomAffine(degrees=360,p=0.5), | |
kornia.augmentation.ColorJitter(brightness=0.2, contrast=0.3, saturation=0.2, hue=0.3, p=1) | |
) | |
# p=0.5 is the probability of applying the transformation | |
""", | |
""" | |
nn.Sequential( | |
kornia.augmentation.RandomErasing(scale=(.4, .8), ratio=(.3, 1/.3), p=0.5), | |
) | |
""", | |
""" | |
nn.Sequential( | |
kornia.augmentation.RandomErasing(scale=(.4, .8), ratio=(.3, 1/.3), p=1, same_on_batch=True), | |
) | |
#By setting same_on_batch=True you can apply the same transform across the batch | |
""", | |
f""" | |
nn.Sequential( | |
kornia.augmentation.RandomResizedCrop(size=({scaler}, {scaler}), scale=(3., 3.), ratio=(2., 2.), p=1.), | |
kornia.augmentation.RandomHorizontalFlip(p=0.7), | |
kornia.augmentation.RandomGrayscale(p=0.5), | |
) | |
""" | |
] | |
selected_transform = st.selectbox( | |
"Pick an augmentation pipeline example:", predefined_transforms | |
) | |
st.write("Transform to apply:") | |
readonly = False | |
content = st_ace( | |
value=selected_transform, | |
height=150, | |
language="python", | |
keybinding="vscode", | |
show_gutter=True, | |
show_print_margin=True, | |
wrap=False, | |
auto_update=False, | |
readonly=readonly, | |
) | |
if content: | |
transform = set_transform(content) | |
process = st.button("Next Batch") | |
# Fake dataloader | |
image_batch = torch.stack(batch_size * [image]) | |
image_batch = image_batch.to(device) | |
transformeds = None | |
try: | |
transformeds = transform(image_batch) | |
except Exception as e: | |
st.write(f"There was an error: {e}") | |
cols = st.columns(4) | |
if transformeds is not None: | |
for i, x in enumerate(transformeds): | |
i = i % 4 | |
cols[i].image(F.to_pil_image(x), use_column_width=True) | |
st.markdown( | |
"There are a lot more transformations available: [Documentation](https://kornia.readthedocs.io/en/latest/augmentation.module.html)" | |
) | |
st.markdown( | |
"Kornia can do a lot more than augmentations~ [Check it out](https://kornia.readthedocs.io/en/latest/get-started/introduction.html)" | |
) |