Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
import gradio as gr | |
import kornia as K | |
from kornia.core import Tensor | |
def load_img(file): | |
# load the image using the rust backend | |
img_bgr: Tensor = K.io.load_image(file.name, K.io.ImageLoadType.RGB32) | |
img_bgr = img_bgr[None, ...].float() / 255.0 | |
img_rgb: Tensor = K.color.bgr_to_rgb(img_bgr) | |
img_gray = K.color.rgb_to_grayscale(img_rgb) | |
return img_gray | |
def canny_edge_detector(file): | |
x_gray = load_img(file) | |
x_canny: Tensor = K.filters.canny(x_gray)[0] | |
img_out = 1.0 - x_canny.clamp(0.0, 1.0) | |
return K.utils.tensor_to_image(img_out) | |
def sobel_edge_detector(file): | |
x_gray = load_img(file) | |
x_sobel: Tensor = K.filters.sobel(x_gray) | |
img_out = 1.0 - x_sobel | |
return K.utils.tensor_to_image(img_out) | |
def simple_edge_detector(file, order=1, dir="x"): | |
x_gray = load_img(file) | |
grads: Tensor = K.filters.spatial_gradient(x_gray, order=2) # BxCx2xHxW | |
grads_x = grads[:, :, 0] | |
grads_y = grads[:, :, 1] | |
if dir == "x": | |
img_out = 1.0 - grads_x.clamp(0.0, 1.0) | |
else: | |
img_out = 1.0 - grads_y.clamp(0.0, 1.0) | |
return K.utils.tensor_to_image(img_out) | |
def laplacian_edge_detector(file, kernel_size=5): | |
x_gray = load_img(file) | |
x_canny: Tensor = K.filters.canny(x_gray)[0] | |
img_out = 1.0 - x_canny.clamp(0.0, 1.0) | |
return K.utils.tensor_to_image(img_out) | |
examples = [ | |
["examples/doraemon.jpg"], | |
] | |
title = "Kornia Edge Detector" | |
description = "<p style='text-align: center'>This is a Gradio demo for Kornia's Edge Detector.</p><p style='text-align: center'>To use it, simply upload your image, or click one of the examples to load them, and use the sliders to enhance! Read more at the links at the bottom.</p>" | |
article = "<p style='text-align: center'><a href='https://kornia.readthedocs.io/en/latest/' target='_blank'>Kornia Docs</a> | <a href='https://github.com/kornia/kornia' target='_blank'>Kornia Github Repo</a> | <a href='https://kornia-tutorials.readthedocs.io/en/latest/image_enhancement.html' target='_blank'>Kornia Enhancements Tutorial</a></p>" | |
def change_kernel(choice): | |
if choice == "Laplacian": | |
return gr.update(visible=True) | |
else: | |
return gr.update(visible=False) | |
def change_order(choice): | |
if choice == "simple": | |
return gr.update(visible=True) | |
else: | |
return gr.update(visible=False) | |
def change_button(choice): | |
if choice == "simple": | |
return gr.Button("Detect").click( | |
canny_edge_detector, inputs=image_input, outputs=image_output | |
) | |
elif choice == "sobel": | |
return gr.Button("Detect").click( | |
sobel_edge_detector, inputs=image_input, outputs=image_output | |
) | |
elif choice == "laplacian": | |
return gr.Button("Detect").click( | |
laplacian_edge_detector, inputs=image_input, outputs=image_output | |
) | |
else: | |
return gr.Button("Detect").click( | |
simple_edge_detector, inputs=image_input, outputs=image_output | |
) | |
with gr.Blocks() as demo: | |
with gr.Row(): | |
image_input = gr.Image() | |
image_output = gr.Image() | |
radio = gr.Radio( | |
["canny", "simple", "sobel", "laplacian"], | |
label="Essay Length to Write?", | |
) | |
kernel = gr.Slider( | |
minimum=1, | |
maximum=6, | |
step=1, | |
default=5, | |
label="kernel_size", | |
visible=False, | |
) | |
order = gr.Slider( | |
minimum=1, | |
maximum=2, | |
step=1, | |
default=1, | |
label="Derivative order", | |
visible=False, | |
) | |
Button = gr.Button("Detect") | |
radio.change(fn=change_kernel, inputs=radio, outputs=kernel) | |
radio.change(fn=change_order, inputs=radio, outputs=order) | |
radio.change(fn=change_button, inputs=radio, outputs=Button) | |
demo.launch() | |