know-one-1
update files
7e2640a
raw
history blame
3.88 kB
import gradio as gr
import kornia as K
from kornia.core import Tensor
def load_img(file):
# load the image using the rust backend
img_bgr: Tensor = K.io.load_image(file.name, K.io.ImageLoadType.RGB32)
img_bgr = img_bgr[None, ...].float() / 255.0
img_rgb: Tensor = K.color.bgr_to_rgb(img_bgr)
img_gray = K.color.rgb_to_grayscale(img_rgb)
return img_gray
def canny_edge_detector(file):
x_gray = load_img(file)
x_canny: Tensor = K.filters.canny(x_gray)[0]
img_out = 1.0 - x_canny.clamp(0.0, 1.0)
return K.utils.tensor_to_image(img_out)
def sobel_edge_detector(file):
x_gray = load_img(file)
x_sobel: Tensor = K.filters.sobel(x_gray)
img_out = 1.0 - x_sobel
return K.utils.tensor_to_image(img_out)
def simple_edge_detector(file, order=1, dir="x"):
x_gray = load_img(file)
grads: Tensor = K.filters.spatial_gradient(x_gray, order=2) # BxCx2xHxW
grads_x = grads[:, :, 0]
grads_y = grads[:, :, 1]
if dir == "x":
img_out = 1.0 - grads_x.clamp(0.0, 1.0)
else:
img_out = 1.0 - grads_y.clamp(0.0, 1.0)
return K.utils.tensor_to_image(img_out)
def laplacian_edge_detector(file, kernel_size=5):
x_gray = load_img(file)
x_canny: Tensor = K.filters.canny(x_gray)[0]
img_out = 1.0 - x_canny.clamp(0.0, 1.0)
return K.utils.tensor_to_image(img_out)
examples = [
["examples/doraemon.jpg"],
]
title = "Kornia Edge Detector"
description = "<p style='text-align: center'>This is a Gradio demo for Kornia's Edge Detector.</p><p style='text-align: center'>To use it, simply upload your image, or click one of the examples to load them, and use the sliders to enhance! Read more at the links at the bottom.</p>"
article = "<p style='text-align: center'><a href='https://kornia.readthedocs.io/en/latest/' target='_blank'>Kornia Docs</a> | <a href='https://github.com/kornia/kornia' target='_blank'>Kornia Github Repo</a> | <a href='https://kornia-tutorials.readthedocs.io/en/latest/image_enhancement.html' target='_blank'>Kornia Enhancements Tutorial</a></p>"
def change_kernel(choice):
if choice == "Laplacian":
return gr.update(visible=True)
else:
return gr.update(visible=False)
def change_order(choice):
if choice == "simple":
return gr.update(visible=True)
else:
return gr.update(visible=False)
def change_button(choice):
if choice == "simple":
return gr.Button("Detect").click(
canny_edge_detector, inputs=image_input, outputs=image_output
)
elif choice == "sobel":
return gr.Button("Detect").click(
sobel_edge_detector, inputs=image_input, outputs=image_output
)
elif choice == "laplacian":
return gr.Button("Detect").click(
laplacian_edge_detector, inputs=image_input, outputs=image_output
)
else:
return gr.Button("Detect").click(
simple_edge_detector, inputs=image_input, outputs=image_output
)
with gr.Blocks() as demo:
with gr.Row():
image_input = gr.Image()
image_output = gr.Image()
radio = gr.Radio(
["canny", "simple", "sobel", "laplacian"],
label="Essay Length to Write?",
)
kernel = gr.Slider(
minimum=1,
maximum=6,
step=1,
default=5,
label="kernel_size",
visible=False,
)
order = gr.Slider(
minimum=1,
maximum=2,
step=1,
default=1,
label="Derivative order",
visible=False,
)
Button = gr.Button("Detect")
radio.change(fn=change_kernel, inputs=radio, outputs=kernel)
radio.change(fn=change_order, inputs=radio, outputs=order)
radio.change(fn=change_button, inputs=radio, outputs=Button)
demo.launch()