import gradio as gr import kornia as K from kornia.core import Tensor def load_img(file): # load the image using the rust backend img_bgr: Tensor = K.io.load_image(file.name, K.io.ImageLoadType.RGB32) img_bgr = img_bgr[None, ...].float() / 255.0 img_rgb: Tensor = K.color.bgr_to_rgb(img_bgr) img_gray = K.color.rgb_to_grayscale(img_rgb) return img_gray def canny_edge_detector(file): x_gray = load_img(file) x_canny: Tensor = K.filters.canny(x_gray)[0] img_out = 1.0 - x_canny.clamp(0.0, 1.0) return K.utils.tensor_to_image(img_out) def sobel_edge_detector(file): x_gray = load_img(file) x_sobel: Tensor = K.filters.sobel(x_gray) img_out = 1.0 - x_sobel return K.utils.tensor_to_image(img_out) def simple_edge_detector(file, order=1, dir="x"): x_gray = load_img(file) grads: Tensor = K.filters.spatial_gradient(x_gray, order=2) # BxCx2xHxW grads_x = grads[:, :, 0] grads_y = grads[:, :, 1] if dir == "x": img_out = 1.0 - grads_x.clamp(0.0, 1.0) else: img_out = 1.0 - grads_y.clamp(0.0, 1.0) return K.utils.tensor_to_image(img_out) def laplacian_edge_detector(file, kernel_size=5): x_gray = load_img(file) x_canny: Tensor = K.filters.canny(x_gray)[0] img_out = 1.0 - x_canny.clamp(0.0, 1.0) return K.utils.tensor_to_image(img_out) examples = [ ["examples/doraemon.jpg"], ] title = "Kornia Edge Detector" description = "
This is a Gradio demo for Kornia's Edge Detector.
To use it, simply upload your image, or click one of the examples to load them, and use the sliders to enhance! Read more at the links at the bottom.
" article = "Kornia Docs | Kornia Github Repo | Kornia Enhancements Tutorial
" def change_kernel(choice): if choice == "Laplacian": return gr.update(visible=True) else: return gr.update(visible=False) def change_order(choice): if choice == "simple": return gr.update(visible=True) else: return gr.update(visible=False) def change_button(choice): if choice == "simple": return gr.Button("Detect").click( canny_edge_detector, inputs=image_input, outputs=image_output ) elif choice == "sobel": return gr.Button("Detect").click( sobel_edge_detector, inputs=image_input, outputs=image_output ) elif choice == "laplacian": return gr.Button("Detect").click( laplacian_edge_detector, inputs=image_input, outputs=image_output ) else: return gr.Button("Detect").click( simple_edge_detector, inputs=image_input, outputs=image_output ) with gr.Blocks() as demo: with gr.Row(): image_input = gr.Image() image_output = gr.Image() radio = gr.Radio( ["canny", "simple", "sobel", "laplacian"], label="Essay Length to Write?", ) kernel = gr.Slider( minimum=1, maximum=6, step=1, default=5, label="kernel_size", visible=False, ) order = gr.Slider( minimum=1, maximum=2, step=1, default=1, label="Derivative order", visible=False, ) Button = gr.Button("Detect") radio.change(fn=change_kernel, inputs=radio, outputs=kernel) radio.change(fn=change_order, inputs=radio, outputs=order) radio.change(fn=change_button, inputs=radio, outputs=Button) demo.launch()