Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
Johannes
commited on
Commit
·
25a8011
1
Parent(s):
83849bd
update
Browse files- app.py +56 -30
- collect_env.py +187 -131
- plot_utils.py +5 -5
- requirements.txt +1 -1
app.py
CHANGED
@@ -3,12 +3,13 @@ import kornia as K
|
|
3 |
import kornia.feature as KF
|
4 |
import torch
|
5 |
import matplotlib
|
6 |
-
|
|
|
7 |
import numpy as np
|
8 |
from plot_utils import plot_images, plot_lines, plot_color_line_matches
|
9 |
|
10 |
sold2 = KF.SOLD2(pretrained=True, config=None)
|
11 |
-
ransac = K.geometry.RANSAC(model_type="
|
12 |
|
13 |
|
14 |
def infer(img1, img2, line_style: str):
|
@@ -17,48 +18,68 @@ def infer(img1, img2, line_style: str):
|
|
17 |
|
18 |
torch_img1_gray = K.color.rgb_to_grayscale(torch_img1)
|
19 |
torch_img2_gray = K.color.rgb_to_grayscale(torch_img2)
|
20 |
-
|
21 |
-
imgs = torch.stack(
|
22 |
-
|
|
|
|
|
23 |
with torch.inference_mode():
|
24 |
outputs = sold2(imgs)
|
25 |
-
|
26 |
line_seg1 = outputs["line_segments"][0]
|
27 |
line_seg2 = outputs["line_segments"][1]
|
28 |
desc1 = outputs["dense_desc"][0]
|
29 |
desc2 = outputs["dense_desc"][1]
|
30 |
-
|
31 |
with torch.inference_mode():
|
32 |
matches = sold2.match(line_seg1, line_seg2, desc1[None], desc2[None])
|
33 |
-
|
34 |
valid_matches = matches != -1
|
35 |
match_indices = matches[valid_matches]
|
36 |
|
37 |
matched_lines1 = line_seg1[valid_matches]
|
38 |
matched_lines2 = line_seg2[match_indices]
|
39 |
-
|
40 |
imgs_to_plot = [K.tensor_to_image(torch_img1), K.tensor_to_image(torch_img2)]
|
41 |
|
42 |
-
fig = plot_images(
|
|
|
|
|
43 |
if line_style == "Line Matches":
|
44 |
lines_to_plot = [line_seg1.numpy(), line_seg2.numpy()]
|
45 |
plot_lines(lines_to_plot, fig, ps=3, lw=2, indices={0, 1})
|
46 |
elif line_style == "Color Line Matches":
|
47 |
plot_color_line_matches([matched_lines1, matched_lines2], fig, lw=2)
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
return fig
|
60 |
|
61 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
|
63 |
description = """In this space you can try out Line Detection and Segment Matching with the Kornia library as seen in [this tutorial](https://kornia-tutorials.readthedocs.io/en/latest/line_detection_and_matching_sold2.html).
|
64 |
|
@@ -68,17 +89,22 @@ Just upload two images of a scene with different view points, choose an option f
|
|
68 |
|
69 |
Iface = gr.Interface(
|
70 |
fn=infer,
|
71 |
-
inputs=[
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
|
|
79 |
],
|
|
|
|
|
|
|
|
|
80 |
outputs=gr.components.Plot(),
|
81 |
examples=[["terrace0.JPG", "terrace1.JPG", "Line Matches"]],
|
82 |
title="Line Segment Matching with Kornia",
|
83 |
description=description,
|
84 |
-
).launch()
|
|
|
3 |
import kornia.feature as KF
|
4 |
import torch
|
5 |
import matplotlib
|
6 |
+
|
7 |
+
matplotlib.use("Agg")
|
8 |
import numpy as np
|
9 |
from plot_utils import plot_images, plot_lines, plot_color_line_matches
|
10 |
|
11 |
sold2 = KF.SOLD2(pretrained=True, config=None)
|
12 |
+
ransac = K.geometry.RANSAC(model_type="homography_from_linesegments", inl_th=3.0)
|
13 |
|
14 |
|
15 |
def infer(img1, img2, line_style: str):
|
|
|
18 |
|
19 |
torch_img1_gray = K.color.rgb_to_grayscale(torch_img1)
|
20 |
torch_img2_gray = K.color.rgb_to_grayscale(torch_img2)
|
21 |
+
|
22 |
+
imgs = torch.stack(
|
23 |
+
[torch_img1_gray, torch_img2_gray],
|
24 |
+
)
|
25 |
+
|
26 |
with torch.inference_mode():
|
27 |
outputs = sold2(imgs)
|
28 |
+
|
29 |
line_seg1 = outputs["line_segments"][0]
|
30 |
line_seg2 = outputs["line_segments"][1]
|
31 |
desc1 = outputs["dense_desc"][0]
|
32 |
desc2 = outputs["dense_desc"][1]
|
33 |
+
|
34 |
with torch.inference_mode():
|
35 |
matches = sold2.match(line_seg1, line_seg2, desc1[None], desc2[None])
|
36 |
+
|
37 |
valid_matches = matches != -1
|
38 |
match_indices = matches[valid_matches]
|
39 |
|
40 |
matched_lines1 = line_seg1[valid_matches]
|
41 |
matched_lines2 = line_seg2[match_indices]
|
42 |
+
|
43 |
imgs_to_plot = [K.tensor_to_image(torch_img1), K.tensor_to_image(torch_img2)]
|
44 |
|
45 |
+
fig = plot_images(
|
46 |
+
imgs_to_plot, ["Image 1 - detected lines", "Image 2 - detected lines"]
|
47 |
+
)
|
48 |
if line_style == "Line Matches":
|
49 |
lines_to_plot = [line_seg1.numpy(), line_seg2.numpy()]
|
50 |
plot_lines(lines_to_plot, fig, ps=3, lw=2, indices={0, 1})
|
51 |
elif line_style == "Color Line Matches":
|
52 |
plot_color_line_matches([matched_lines1, matched_lines2], fig, lw=2)
|
53 |
+
elif line_style == "Line Segment Homography Warping":
|
54 |
+
_, _, img1_warp_to2 = get_homography_values(
|
55 |
+
matched_lines1, matched_lines2, torch_img1
|
56 |
+
)
|
57 |
+
fig = plot_images(
|
58 |
+
[K.tensor_to_image(torch_img2), K.tensor_to_image(img1_warp_to2)],
|
59 |
+
["Image 2", "Image 1 wrapped to 2"],
|
60 |
+
)
|
61 |
+
elif line_style == "Matched Lines for Homography Warping":
|
62 |
+
_, correspondence_mask, _ = get_homography_values(
|
63 |
+
matched_lines1, matched_lines2, torch_img1
|
64 |
+
)
|
65 |
+
plot_color_line_matches(
|
66 |
+
[matched_lines1[correspondence_mask], matched_lines2[correspondence_mask]],
|
67 |
+
fig,
|
68 |
+
lw=2,
|
69 |
+
)
|
70 |
return fig
|
71 |
|
72 |
|
73 |
+
def get_homography_values(matched_lines1, matched_lines2, torch_img1):
|
74 |
+
H_ransac, correspondence_mask = ransac(
|
75 |
+
matched_lines1.flip(dims=(2,)), matched_lines2.flip(dims=(2,))
|
76 |
+
)
|
77 |
+
img1_warp_to2 = K.geometry.warp_perspective(
|
78 |
+
torch_img1[None], H_ransac[None], (torch_img1.shape[1:])
|
79 |
+
)
|
80 |
+
|
81 |
+
return H_ransac, correspondence_mask, img1_warp_to2
|
82 |
+
|
83 |
|
84 |
description = """In this space you can try out Line Detection and Segment Matching with the Kornia library as seen in [this tutorial](https://kornia-tutorials.readthedocs.io/en/latest/line_detection_and_matching_sold2.html).
|
85 |
|
|
|
89 |
|
90 |
Iface = gr.Interface(
|
91 |
fn=infer,
|
92 |
+
inputs=[
|
93 |
+
gr.components.Image(),
|
94 |
+
gr.components.Image(),
|
95 |
+
gr.components.Dropdown(
|
96 |
+
[
|
97 |
+
"Line Matches",
|
98 |
+
"Color Line Matches",
|
99 |
+
"Line Segment Homography Warping",
|
100 |
+
"Matched Lines for Homography Warping",
|
101 |
],
|
102 |
+
value="Line Matches",
|
103 |
+
label="Options",
|
104 |
+
),
|
105 |
+
],
|
106 |
outputs=gr.components.Plot(),
|
107 |
examples=[["terrace0.JPG", "terrace1.JPG", "Line Matches"]],
|
108 |
title="Line Segment Matching with Kornia",
|
109 |
description=description,
|
110 |
+
).launch()
|
collect_env.py
CHANGED
@@ -14,46 +14,51 @@ from collections import namedtuple
|
|
14 |
|
15 |
try:
|
16 |
import torch
|
|
|
17 |
TORCH_AVAILABLE = True
|
18 |
except (ImportError, NameError, AttributeError, OSError):
|
19 |
TORCH_AVAILABLE = False
|
20 |
|
21 |
# System Environment Information
|
22 |
-
SystemEnv = namedtuple(
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
|
|
|
|
|
|
47 |
|
48 |
|
49 |
def run(command):
|
50 |
"""Returns (return-code, stdout, stderr)"""
|
51 |
-
p = subprocess.Popen(
|
52 |
-
|
|
|
53 |
raw_output, raw_err = p.communicate()
|
54 |
rc = p.returncode
|
55 |
-
if get_platform() ==
|
56 |
-
enc =
|
57 |
else:
|
58 |
enc = locale.getpreferredencoding()
|
59 |
output = raw_output.decode(enc)
|
@@ -79,16 +84,17 @@ def run_and_parse_first_match(run_lambda, command, regex):
|
|
79 |
return None
|
80 |
return match.group(1)
|
81 |
|
|
|
82 |
def run_and_return_first_line(run_lambda, command):
|
83 |
"""Runs command using run_lambda and returns first line if output is not empty"""
|
84 |
rc, out, _ = run_lambda(command)
|
85 |
if rc != 0:
|
86 |
return None
|
87 |
-
return out.split(
|
88 |
|
89 |
|
90 |
def get_conda_packages(run_lambda):
|
91 |
-
conda = os.environ.get(
|
92 |
out = run_and_read_all(run_lambda, "{} list".format(conda))
|
93 |
if out is None:
|
94 |
return out
|
@@ -111,68 +117,77 @@ def get_conda_packages(run_lambda):
|
|
111 |
)
|
112 |
)
|
113 |
|
|
|
114 |
def get_gcc_version(run_lambda):
|
115 |
-
return run_and_parse_first_match(run_lambda,
|
|
|
116 |
|
117 |
def get_clang_version(run_lambda):
|
118 |
-
return run_and_parse_first_match(
|
|
|
|
|
119 |
|
120 |
|
121 |
def get_cmake_version(run_lambda):
|
122 |
-
return run_and_parse_first_match(run_lambda,
|
123 |
|
124 |
|
125 |
def get_nvidia_driver_version(run_lambda):
|
126 |
-
if get_platform() ==
|
127 |
-
cmd =
|
128 |
-
return run_and_parse_first_match(
|
129 |
-
|
|
|
130 |
smi = get_nvidia_smi()
|
131 |
-
return run_and_parse_first_match(run_lambda, smi, r
|
132 |
|
133 |
|
134 |
def get_gpu_info(run_lambda):
|
135 |
-
if get_platform() ==
|
|
|
|
|
|
|
|
|
136 |
if TORCH_AVAILABLE and torch.cuda.is_available():
|
137 |
return torch.cuda.get_device_name(None)
|
138 |
return None
|
139 |
smi = get_nvidia_smi()
|
140 |
-
uuid_regex = re.compile(r
|
141 |
-
rc, out, _ = run_lambda(smi +
|
142 |
if rc != 0:
|
143 |
return None
|
144 |
# Anonymize GPUs by removing their UUID
|
145 |
-
return re.sub(uuid_regex,
|
146 |
|
147 |
|
148 |
def get_running_cuda_version(run_lambda):
|
149 |
-
return run_and_parse_first_match(run_lambda,
|
150 |
|
151 |
|
152 |
def get_cudnn_version(run_lambda):
|
153 |
"""This will return a list of libcudnn.so; it's hard to tell which one is being used"""
|
154 |
-
if get_platform() ==
|
155 |
-
system_root = os.environ.get(
|
156 |
-
cuda_path = os.environ.get(
|
157 |
-
where_cmd = os.path.join(system_root,
|
158 |
cudnn_cmd = '{} /R "{}\\bin" cudnn*.dll'.format(where_cmd, cuda_path)
|
159 |
-
elif get_platform() ==
|
160 |
# CUDA libraries and drivers can be found in /usr/local/cuda/. See
|
161 |
# https://docs.nvidia.com/cuda/cuda-installation-guide-mac-os-x/index.html#install
|
162 |
# https://docs.nvidia.com/deeplearning/sdk/cudnn-install/index.html#installmac
|
163 |
# Use CUDNN_LIBRARY when cudnn library is installed elsewhere.
|
164 |
-
cudnn_cmd =
|
165 |
else:
|
166 |
cudnn_cmd = 'ldconfig -p | grep libcudnn | rev | cut -d" " -f1 | rev'
|
167 |
rc, out, _ = run_lambda(cudnn_cmd)
|
168 |
# find will return 1 if there are permission errors or if not found
|
169 |
if len(out) == 0 or (rc != 1 and rc != 0):
|
170 |
-
l = os.environ.get(
|
171 |
if l is not None and os.path.isfile(l):
|
172 |
return os.path.realpath(l)
|
173 |
return None
|
174 |
files_set = set()
|
175 |
-
for fn in out.split(
|
176 |
fn = os.path.realpath(fn) # eliminate symbolic links
|
177 |
if os.path.isfile(fn):
|
178 |
files_set.add(fn)
|
@@ -182,18 +197,20 @@ def get_cudnn_version(run_lambda):
|
|
182 |
files = list(sorted(files_set))
|
183 |
if len(files) == 1:
|
184 |
return files[0]
|
185 |
-
result =
|
186 |
-
return
|
187 |
|
188 |
|
189 |
def get_nvidia_smi():
|
190 |
# Note: nvidia-smi is currently available only on Windows and Linux
|
191 |
-
smi =
|
192 |
-
if get_platform() ==
|
193 |
-
system_root = os.environ.get(
|
194 |
-
program_files_root = os.environ.get(
|
195 |
-
legacy_path = os.path.join(
|
196 |
-
|
|
|
|
|
197 |
smis = [new_path, legacy_path]
|
198 |
for candidate_smi in smis:
|
199 |
if os.path.exists(candidate_smi):
|
@@ -203,63 +220,69 @@ def get_nvidia_smi():
|
|
203 |
|
204 |
|
205 |
def get_platform():
|
206 |
-
if sys.platform.startswith(
|
207 |
-
return
|
208 |
-
elif sys.platform.startswith(
|
209 |
-
return
|
210 |
-
elif sys.platform.startswith(
|
211 |
-
return
|
212 |
-
elif sys.platform.startswith(
|
213 |
-
return
|
214 |
else:
|
215 |
return sys.platform
|
216 |
|
217 |
|
218 |
def get_mac_version(run_lambda):
|
219 |
-
return run_and_parse_first_match(run_lambda,
|
220 |
|
221 |
|
222 |
def get_windows_version(run_lambda):
|
223 |
-
system_root = os.environ.get(
|
224 |
-
wmic_cmd = os.path.join(system_root,
|
225 |
-
findstr_cmd = os.path.join(system_root,
|
226 |
-
return run_and_read_all(
|
|
|
|
|
227 |
|
228 |
|
229 |
def get_lsb_version(run_lambda):
|
230 |
-
return run_and_parse_first_match(
|
|
|
|
|
231 |
|
232 |
|
233 |
def check_release_file(run_lambda):
|
234 |
-
return run_and_parse_first_match(
|
235 |
-
|
|
|
236 |
|
237 |
|
238 |
def get_os(run_lambda):
|
239 |
from platform import machine
|
|
|
240 |
platform = get_platform()
|
241 |
|
242 |
-
if platform ==
|
243 |
return get_windows_version(run_lambda)
|
244 |
|
245 |
-
if platform ==
|
246 |
version = get_mac_version(run_lambda)
|
247 |
if version is None:
|
248 |
return None
|
249 |
-
return
|
250 |
|
251 |
-
if platform ==
|
252 |
# Ubuntu/Debian based
|
253 |
desc = get_lsb_version(run_lambda)
|
254 |
if desc is not None:
|
255 |
-
return
|
256 |
|
257 |
# Try reading /etc/*-release
|
258 |
desc = check_release_file(run_lambda)
|
259 |
if desc is not None:
|
260 |
-
return
|
261 |
|
262 |
-
return
|
263 |
|
264 |
# Unknown platform
|
265 |
return platform
|
@@ -267,14 +290,16 @@ def get_os(run_lambda):
|
|
267 |
|
268 |
def get_python_platform():
|
269 |
import platform
|
|
|
270 |
return platform.platform()
|
271 |
|
272 |
|
273 |
def get_libc_version():
|
274 |
import platform
|
275 |
-
|
276 |
-
|
277 |
-
|
|
|
278 |
|
279 |
|
280 |
def get_pip_packages(run_lambda):
|
@@ -297,23 +322,26 @@ def get_pip_packages(run_lambda):
|
|
297 |
)
|
298 |
)
|
299 |
|
300 |
-
pip_version =
|
301 |
-
out = run_with_pip(sys.executable +
|
302 |
|
303 |
return pip_version, out
|
304 |
|
305 |
|
306 |
def get_cachingallocator_config():
|
307 |
-
ca_config = os.environ.get(
|
308 |
return ca_config
|
309 |
|
|
|
310 |
def is_xnnpack_available():
|
311 |
if TORCH_AVAILABLE:
|
312 |
import torch.backends.xnnpack
|
|
|
313 |
return str(torch.backends.xnnpack.enabled) # type: ignore[attr-defined]
|
314 |
else:
|
315 |
return "N/A"
|
316 |
|
|
|
317 |
def get_env_info():
|
318 |
run_lambda = run
|
319 |
pip_version, pip_list_output = get_pip_packages(run_lambda)
|
@@ -323,24 +351,32 @@ def get_env_info():
|
|
323 |
debug_mode_str = str(torch.version.debug)
|
324 |
cuda_available_str = str(torch.cuda.is_available())
|
325 |
cuda_version_str = torch.version.cuda
|
326 |
-
if
|
327 |
-
|
|
|
|
|
328 |
else: # HIP version
|
329 |
-
cfg = torch._C._show_config().split(
|
330 |
-
hip_runtime_version = [
|
331 |
-
|
332 |
-
|
|
|
|
|
|
|
|
|
333 |
hip_compiled_version = torch.version.hip
|
334 |
else:
|
335 |
-
version_str = debug_mode_str = cuda_available_str = cuda_version_str =
|
336 |
-
hip_compiled_version = hip_runtime_version = miopen_runtime_version =
|
337 |
|
338 |
sys_version = sys.version.replace("\n", " ")
|
339 |
|
340 |
return SystemEnv(
|
341 |
torch_version=version_str,
|
342 |
is_debug_build=debug_mode_str,
|
343 |
-
python_version=
|
|
|
|
|
344 |
python_platform=get_python_platform(),
|
345 |
is_cuda_available=cuda_available_str,
|
346 |
cuda_compiled_version=cuda_version_str,
|
@@ -363,6 +399,7 @@ def get_env_info():
|
|
363 |
is_xnnpack_available=is_xnnpack_available(),
|
364 |
)
|
365 |
|
|
|
366 |
env_info_fmt = """
|
367 |
PyTorch version: {torch_version}
|
368 |
Is debug build: {is_debug_build}
|
@@ -393,14 +430,14 @@ Versions of relevant libraries:
|
|
393 |
|
394 |
|
395 |
def pretty_str(envinfo):
|
396 |
-
def replace_nones(dct, replacement=
|
397 |
for key in dct.keys():
|
398 |
if dct[key] is not None:
|
399 |
continue
|
400 |
dct[key] = replacement
|
401 |
return dct
|
402 |
|
403 |
-
def replace_bools(dct, true=
|
404 |
for key in dct.keys():
|
405 |
if dct[key] is True:
|
406 |
dct[key] = true
|
@@ -408,42 +445,48 @@ def pretty_str(envinfo):
|
|
408 |
dct[key] = false
|
409 |
return dct
|
410 |
|
411 |
-
def prepend(text, tag=
|
412 |
-
lines = text.split(
|
413 |
updated_lines = [tag + line for line in lines]
|
414 |
-
return
|
415 |
|
416 |
-
def replace_if_empty(text, replacement=
|
417 |
if text is not None and len(text) == 0:
|
418 |
return replacement
|
419 |
return text
|
420 |
|
421 |
def maybe_start_on_next_line(string):
|
422 |
# If `string` is multiline, prepend a \n to it.
|
423 |
-
if string is not None and len(string.split(
|
424 |
-
return
|
425 |
return string
|
426 |
|
427 |
mutable_dict = envinfo._asdict()
|
428 |
|
429 |
# If nvidia_gpu_models is multiline, start on the next line
|
430 |
-
mutable_dict[
|
431 |
-
|
|
|
432 |
|
433 |
# If the machine doesn't have CUDA, report some fields as 'No CUDA'
|
434 |
dynamic_cuda_fields = [
|
435 |
-
|
436 |
-
|
437 |
-
|
438 |
]
|
439 |
-
all_cuda_fields = dynamic_cuda_fields + [
|
440 |
all_dynamic_cuda_fields_missing = all(
|
441 |
-
mutable_dict[field] is None for field in dynamic_cuda_fields
|
442 |
-
|
|
|
|
|
|
|
|
|
|
|
443 |
for field in all_cuda_fields:
|
444 |
-
mutable_dict[field] =
|
445 |
if envinfo.cuda_compiled_version is None:
|
446 |
-
mutable_dict[
|
447 |
|
448 |
# Replace True with Yes, False with No
|
449 |
mutable_dict = replace_bools(mutable_dict)
|
@@ -452,17 +495,19 @@ def pretty_str(envinfo):
|
|
452 |
mutable_dict = replace_nones(mutable_dict)
|
453 |
|
454 |
# If either of these are '', replace with 'No relevant packages'
|
455 |
-
mutable_dict[
|
456 |
-
mutable_dict[
|
457 |
|
458 |
# Tag conda and pip packages with a prefix
|
459 |
# If they were previously None, they'll show up as ie '[conda] Could not collect'
|
460 |
-
if mutable_dict[
|
461 |
-
mutable_dict[
|
462 |
-
|
463 |
-
|
464 |
-
|
465 |
-
|
|
|
|
|
466 |
return env_info_fmt.format(**mutable_dict)
|
467 |
|
468 |
|
@@ -475,18 +520,29 @@ def main():
|
|
475 |
output = get_pretty_env_info()
|
476 |
print(output)
|
477 |
|
478 |
-
if
|
|
|
|
|
|
|
|
|
479 |
minidump_dir = torch.utils._crash_handler.DEFAULT_MINIDUMP_DIR
|
480 |
if sys.platform == "linux" and os.path.exists(minidump_dir):
|
481 |
-
dumps = [
|
|
|
|
|
482 |
latest = max(dumps, key=os.path.getctime)
|
483 |
ctime = os.path.getctime(latest)
|
484 |
-
creation_time = datetime.datetime.fromtimestamp(ctime).strftime(
|
485 |
-
|
486 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
487 |
print(msg, file=sys.stderr)
|
488 |
|
489 |
|
490 |
-
|
491 |
-
if __name__ == '__main__':
|
492 |
main()
|
|
|
14 |
|
15 |
try:
|
16 |
import torch
|
17 |
+
|
18 |
TORCH_AVAILABLE = True
|
19 |
except (ImportError, NameError, AttributeError, OSError):
|
20 |
TORCH_AVAILABLE = False
|
21 |
|
22 |
# System Environment Information
|
23 |
+
SystemEnv = namedtuple(
|
24 |
+
"SystemEnv",
|
25 |
+
[
|
26 |
+
"torch_version",
|
27 |
+
"is_debug_build",
|
28 |
+
"cuda_compiled_version",
|
29 |
+
"gcc_version",
|
30 |
+
"clang_version",
|
31 |
+
"cmake_version",
|
32 |
+
"os",
|
33 |
+
"libc_version",
|
34 |
+
"python_version",
|
35 |
+
"python_platform",
|
36 |
+
"is_cuda_available",
|
37 |
+
"cuda_runtime_version",
|
38 |
+
"nvidia_driver_version",
|
39 |
+
"nvidia_gpu_models",
|
40 |
+
"cudnn_version",
|
41 |
+
"pip_version", # 'pip' or 'pip3'
|
42 |
+
"pip_packages",
|
43 |
+
"conda_packages",
|
44 |
+
"hip_compiled_version",
|
45 |
+
"hip_runtime_version",
|
46 |
+
"miopen_runtime_version",
|
47 |
+
"caching_allocator_config",
|
48 |
+
"is_xnnpack_available",
|
49 |
+
],
|
50 |
+
)
|
51 |
|
52 |
|
53 |
def run(command):
|
54 |
"""Returns (return-code, stdout, stderr)"""
|
55 |
+
p = subprocess.Popen(
|
56 |
+
command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=True
|
57 |
+
)
|
58 |
raw_output, raw_err = p.communicate()
|
59 |
rc = p.returncode
|
60 |
+
if get_platform() == "win32":
|
61 |
+
enc = "oem"
|
62 |
else:
|
63 |
enc = locale.getpreferredencoding()
|
64 |
output = raw_output.decode(enc)
|
|
|
84 |
return None
|
85 |
return match.group(1)
|
86 |
|
87 |
+
|
88 |
def run_and_return_first_line(run_lambda, command):
|
89 |
"""Runs command using run_lambda and returns first line if output is not empty"""
|
90 |
rc, out, _ = run_lambda(command)
|
91 |
if rc != 0:
|
92 |
return None
|
93 |
+
return out.split("\n")[0]
|
94 |
|
95 |
|
96 |
def get_conda_packages(run_lambda):
|
97 |
+
conda = os.environ.get("CONDA_EXE", "conda")
|
98 |
out = run_and_read_all(run_lambda, "{} list".format(conda))
|
99 |
if out is None:
|
100 |
return out
|
|
|
117 |
)
|
118 |
)
|
119 |
|
120 |
+
|
121 |
def get_gcc_version(run_lambda):
|
122 |
+
return run_and_parse_first_match(run_lambda, "gcc --version", r"gcc (.*)")
|
123 |
+
|
124 |
|
125 |
def get_clang_version(run_lambda):
|
126 |
+
return run_and_parse_first_match(
|
127 |
+
run_lambda, "clang --version", r"clang version (.*)"
|
128 |
+
)
|
129 |
|
130 |
|
131 |
def get_cmake_version(run_lambda):
|
132 |
+
return run_and_parse_first_match(run_lambda, "cmake --version", r"cmake (.*)")
|
133 |
|
134 |
|
135 |
def get_nvidia_driver_version(run_lambda):
|
136 |
+
if get_platform() == "darwin":
|
137 |
+
cmd = "kextstat | grep -i cuda"
|
138 |
+
return run_and_parse_first_match(
|
139 |
+
run_lambda, cmd, r"com[.]nvidia[.]CUDA [(](.*?)[)]"
|
140 |
+
)
|
141 |
smi = get_nvidia_smi()
|
142 |
+
return run_and_parse_first_match(run_lambda, smi, r"Driver Version: (.*?) ")
|
143 |
|
144 |
|
145 |
def get_gpu_info(run_lambda):
|
146 |
+
if get_platform() == "darwin" or (
|
147 |
+
TORCH_AVAILABLE
|
148 |
+
and hasattr(torch.version, "hip")
|
149 |
+
and torch.version.hip is not None
|
150 |
+
):
|
151 |
if TORCH_AVAILABLE and torch.cuda.is_available():
|
152 |
return torch.cuda.get_device_name(None)
|
153 |
return None
|
154 |
smi = get_nvidia_smi()
|
155 |
+
uuid_regex = re.compile(r" \(UUID: .+?\)")
|
156 |
+
rc, out, _ = run_lambda(smi + " -L")
|
157 |
if rc != 0:
|
158 |
return None
|
159 |
# Anonymize GPUs by removing their UUID
|
160 |
+
return re.sub(uuid_regex, "", out)
|
161 |
|
162 |
|
163 |
def get_running_cuda_version(run_lambda):
|
164 |
+
return run_and_parse_first_match(run_lambda, "nvcc --version", r"release .+ V(.*)")
|
165 |
|
166 |
|
167 |
def get_cudnn_version(run_lambda):
|
168 |
"""This will return a list of libcudnn.so; it's hard to tell which one is being used"""
|
169 |
+
if get_platform() == "win32":
|
170 |
+
system_root = os.environ.get("SYSTEMROOT", "C:\\Windows")
|
171 |
+
cuda_path = os.environ.get("CUDA_PATH", "%CUDA_PATH%")
|
172 |
+
where_cmd = os.path.join(system_root, "System32", "where")
|
173 |
cudnn_cmd = '{} /R "{}\\bin" cudnn*.dll'.format(where_cmd, cuda_path)
|
174 |
+
elif get_platform() == "darwin":
|
175 |
# CUDA libraries and drivers can be found in /usr/local/cuda/. See
|
176 |
# https://docs.nvidia.com/cuda/cuda-installation-guide-mac-os-x/index.html#install
|
177 |
# https://docs.nvidia.com/deeplearning/sdk/cudnn-install/index.html#installmac
|
178 |
# Use CUDNN_LIBRARY when cudnn library is installed elsewhere.
|
179 |
+
cudnn_cmd = "ls /usr/local/cuda/lib/libcudnn*"
|
180 |
else:
|
181 |
cudnn_cmd = 'ldconfig -p | grep libcudnn | rev | cut -d" " -f1 | rev'
|
182 |
rc, out, _ = run_lambda(cudnn_cmd)
|
183 |
# find will return 1 if there are permission errors or if not found
|
184 |
if len(out) == 0 or (rc != 1 and rc != 0):
|
185 |
+
l = os.environ.get("CUDNN_LIBRARY")
|
186 |
if l is not None and os.path.isfile(l):
|
187 |
return os.path.realpath(l)
|
188 |
return None
|
189 |
files_set = set()
|
190 |
+
for fn in out.split("\n"):
|
191 |
fn = os.path.realpath(fn) # eliminate symbolic links
|
192 |
if os.path.isfile(fn):
|
193 |
files_set.add(fn)
|
|
|
197 |
files = list(sorted(files_set))
|
198 |
if len(files) == 1:
|
199 |
return files[0]
|
200 |
+
result = "\n".join(files)
|
201 |
+
return "Probably one of the following:\n{}".format(result)
|
202 |
|
203 |
|
204 |
def get_nvidia_smi():
|
205 |
# Note: nvidia-smi is currently available only on Windows and Linux
|
206 |
+
smi = "nvidia-smi"
|
207 |
+
if get_platform() == "win32":
|
208 |
+
system_root = os.environ.get("SYSTEMROOT", "C:\\Windows")
|
209 |
+
program_files_root = os.environ.get("PROGRAMFILES", "C:\\Program Files")
|
210 |
+
legacy_path = os.path.join(
|
211 |
+
program_files_root, "NVIDIA Corporation", "NVSMI", smi
|
212 |
+
)
|
213 |
+
new_path = os.path.join(system_root, "System32", smi)
|
214 |
smis = [new_path, legacy_path]
|
215 |
for candidate_smi in smis:
|
216 |
if os.path.exists(candidate_smi):
|
|
|
220 |
|
221 |
|
222 |
def get_platform():
|
223 |
+
if sys.platform.startswith("linux"):
|
224 |
+
return "linux"
|
225 |
+
elif sys.platform.startswith("win32"):
|
226 |
+
return "win32"
|
227 |
+
elif sys.platform.startswith("cygwin"):
|
228 |
+
return "cygwin"
|
229 |
+
elif sys.platform.startswith("darwin"):
|
230 |
+
return "darwin"
|
231 |
else:
|
232 |
return sys.platform
|
233 |
|
234 |
|
235 |
def get_mac_version(run_lambda):
|
236 |
+
return run_and_parse_first_match(run_lambda, "sw_vers -productVersion", r"(.*)")
|
237 |
|
238 |
|
239 |
def get_windows_version(run_lambda):
|
240 |
+
system_root = os.environ.get("SYSTEMROOT", "C:\\Windows")
|
241 |
+
wmic_cmd = os.path.join(system_root, "System32", "Wbem", "wmic")
|
242 |
+
findstr_cmd = os.path.join(system_root, "System32", "findstr")
|
243 |
+
return run_and_read_all(
|
244 |
+
run_lambda, "{} os get Caption | {} /v Caption".format(wmic_cmd, findstr_cmd)
|
245 |
+
)
|
246 |
|
247 |
|
248 |
def get_lsb_version(run_lambda):
|
249 |
+
return run_and_parse_first_match(
|
250 |
+
run_lambda, "lsb_release -a", r"Description:\t(.*)"
|
251 |
+
)
|
252 |
|
253 |
|
254 |
def check_release_file(run_lambda):
|
255 |
+
return run_and_parse_first_match(
|
256 |
+
run_lambda, "cat /etc/*-release", r'PRETTY_NAME="(.*)"'
|
257 |
+
)
|
258 |
|
259 |
|
260 |
def get_os(run_lambda):
|
261 |
from platform import machine
|
262 |
+
|
263 |
platform = get_platform()
|
264 |
|
265 |
+
if platform == "win32" or platform == "cygwin":
|
266 |
return get_windows_version(run_lambda)
|
267 |
|
268 |
+
if platform == "darwin":
|
269 |
version = get_mac_version(run_lambda)
|
270 |
if version is None:
|
271 |
return None
|
272 |
+
return "macOS {} ({})".format(version, machine())
|
273 |
|
274 |
+
if platform == "linux":
|
275 |
# Ubuntu/Debian based
|
276 |
desc = get_lsb_version(run_lambda)
|
277 |
if desc is not None:
|
278 |
+
return "{} ({})".format(desc, machine())
|
279 |
|
280 |
# Try reading /etc/*-release
|
281 |
desc = check_release_file(run_lambda)
|
282 |
if desc is not None:
|
283 |
+
return "{} ({})".format(desc, machine())
|
284 |
|
285 |
+
return "{} ({})".format(platform, machine())
|
286 |
|
287 |
# Unknown platform
|
288 |
return platform
|
|
|
290 |
|
291 |
def get_python_platform():
|
292 |
import platform
|
293 |
+
|
294 |
return platform.platform()
|
295 |
|
296 |
|
297 |
def get_libc_version():
|
298 |
import platform
|
299 |
+
|
300 |
+
if get_platform() != "linux":
|
301 |
+
return "N/A"
|
302 |
+
return "-".join(platform.libc_ver())
|
303 |
|
304 |
|
305 |
def get_pip_packages(run_lambda):
|
|
|
322 |
)
|
323 |
)
|
324 |
|
325 |
+
pip_version = "pip3" if sys.version[0] == "3" else "pip"
|
326 |
+
out = run_with_pip(sys.executable + " -mpip")
|
327 |
|
328 |
return pip_version, out
|
329 |
|
330 |
|
331 |
def get_cachingallocator_config():
|
332 |
+
ca_config = os.environ.get("PYTORCH_CUDA_ALLOC_CONF", "")
|
333 |
return ca_config
|
334 |
|
335 |
+
|
336 |
def is_xnnpack_available():
|
337 |
if TORCH_AVAILABLE:
|
338 |
import torch.backends.xnnpack
|
339 |
+
|
340 |
return str(torch.backends.xnnpack.enabled) # type: ignore[attr-defined]
|
341 |
else:
|
342 |
return "N/A"
|
343 |
|
344 |
+
|
345 |
def get_env_info():
|
346 |
run_lambda = run
|
347 |
pip_version, pip_list_output = get_pip_packages(run_lambda)
|
|
|
351 |
debug_mode_str = str(torch.version.debug)
|
352 |
cuda_available_str = str(torch.cuda.is_available())
|
353 |
cuda_version_str = torch.version.cuda
|
354 |
+
if (
|
355 |
+
not hasattr(torch.version, "hip") or torch.version.hip is None
|
356 |
+
): # cuda version
|
357 |
+
hip_compiled_version = hip_runtime_version = miopen_runtime_version = "N/A"
|
358 |
else: # HIP version
|
359 |
+
cfg = torch._C._show_config().split("\n")
|
360 |
+
hip_runtime_version = [
|
361 |
+
s.rsplit(None, 1)[-1] for s in cfg if "HIP Runtime" in s
|
362 |
+
][0]
|
363 |
+
miopen_runtime_version = [
|
364 |
+
s.rsplit(None, 1)[-1] for s in cfg if "MIOpen" in s
|
365 |
+
][0]
|
366 |
+
cuda_version_str = "N/A"
|
367 |
hip_compiled_version = torch.version.hip
|
368 |
else:
|
369 |
+
version_str = debug_mode_str = cuda_available_str = cuda_version_str = "N/A"
|
370 |
+
hip_compiled_version = hip_runtime_version = miopen_runtime_version = "N/A"
|
371 |
|
372 |
sys_version = sys.version.replace("\n", " ")
|
373 |
|
374 |
return SystemEnv(
|
375 |
torch_version=version_str,
|
376 |
is_debug_build=debug_mode_str,
|
377 |
+
python_version="{} ({}-bit runtime)".format(
|
378 |
+
sys_version, sys.maxsize.bit_length() + 1
|
379 |
+
),
|
380 |
python_platform=get_python_platform(),
|
381 |
is_cuda_available=cuda_available_str,
|
382 |
cuda_compiled_version=cuda_version_str,
|
|
|
399 |
is_xnnpack_available=is_xnnpack_available(),
|
400 |
)
|
401 |
|
402 |
+
|
403 |
env_info_fmt = """
|
404 |
PyTorch version: {torch_version}
|
405 |
Is debug build: {is_debug_build}
|
|
|
430 |
|
431 |
|
432 |
def pretty_str(envinfo):
|
433 |
+
def replace_nones(dct, replacement="Could not collect"):
|
434 |
for key in dct.keys():
|
435 |
if dct[key] is not None:
|
436 |
continue
|
437 |
dct[key] = replacement
|
438 |
return dct
|
439 |
|
440 |
+
def replace_bools(dct, true="Yes", false="No"):
|
441 |
for key in dct.keys():
|
442 |
if dct[key] is True:
|
443 |
dct[key] = true
|
|
|
445 |
dct[key] = false
|
446 |
return dct
|
447 |
|
448 |
+
def prepend(text, tag="[prepend]"):
|
449 |
+
lines = text.split("\n")
|
450 |
updated_lines = [tag + line for line in lines]
|
451 |
+
return "\n".join(updated_lines)
|
452 |
|
453 |
+
def replace_if_empty(text, replacement="No relevant packages"):
|
454 |
if text is not None and len(text) == 0:
|
455 |
return replacement
|
456 |
return text
|
457 |
|
458 |
def maybe_start_on_next_line(string):
|
459 |
# If `string` is multiline, prepend a \n to it.
|
460 |
+
if string is not None and len(string.split("\n")) > 1:
|
461 |
+
return "\n{}\n".format(string)
|
462 |
return string
|
463 |
|
464 |
mutable_dict = envinfo._asdict()
|
465 |
|
466 |
# If nvidia_gpu_models is multiline, start on the next line
|
467 |
+
mutable_dict["nvidia_gpu_models"] = maybe_start_on_next_line(
|
468 |
+
envinfo.nvidia_gpu_models
|
469 |
+
)
|
470 |
|
471 |
# If the machine doesn't have CUDA, report some fields as 'No CUDA'
|
472 |
dynamic_cuda_fields = [
|
473 |
+
"cuda_runtime_version",
|
474 |
+
"nvidia_gpu_models",
|
475 |
+
"nvidia_driver_version",
|
476 |
]
|
477 |
+
all_cuda_fields = dynamic_cuda_fields + ["cudnn_version"]
|
478 |
all_dynamic_cuda_fields_missing = all(
|
479 |
+
mutable_dict[field] is None for field in dynamic_cuda_fields
|
480 |
+
)
|
481 |
+
if (
|
482 |
+
TORCH_AVAILABLE
|
483 |
+
and not torch.cuda.is_available()
|
484 |
+
and all_dynamic_cuda_fields_missing
|
485 |
+
):
|
486 |
for field in all_cuda_fields:
|
487 |
+
mutable_dict[field] = "No CUDA"
|
488 |
if envinfo.cuda_compiled_version is None:
|
489 |
+
mutable_dict["cuda_compiled_version"] = "None"
|
490 |
|
491 |
# Replace True with Yes, False with No
|
492 |
mutable_dict = replace_bools(mutable_dict)
|
|
|
495 |
mutable_dict = replace_nones(mutable_dict)
|
496 |
|
497 |
# If either of these are '', replace with 'No relevant packages'
|
498 |
+
mutable_dict["pip_packages"] = replace_if_empty(mutable_dict["pip_packages"])
|
499 |
+
mutable_dict["conda_packages"] = replace_if_empty(mutable_dict["conda_packages"])
|
500 |
|
501 |
# Tag conda and pip packages with a prefix
|
502 |
# If they were previously None, they'll show up as ie '[conda] Could not collect'
|
503 |
+
if mutable_dict["pip_packages"]:
|
504 |
+
mutable_dict["pip_packages"] = prepend(
|
505 |
+
mutable_dict["pip_packages"], "[{}] ".format(envinfo.pip_version)
|
506 |
+
)
|
507 |
+
if mutable_dict["conda_packages"]:
|
508 |
+
mutable_dict["conda_packages"] = prepend(
|
509 |
+
mutable_dict["conda_packages"], "[conda] "
|
510 |
+
)
|
511 |
return env_info_fmt.format(**mutable_dict)
|
512 |
|
513 |
|
|
|
520 |
output = get_pretty_env_info()
|
521 |
print(output)
|
522 |
|
523 |
+
if (
|
524 |
+
TORCH_AVAILABLE
|
525 |
+
and hasattr(torch, "utils")
|
526 |
+
and hasattr(torch.utils, "_crash_handler")
|
527 |
+
):
|
528 |
minidump_dir = torch.utils._crash_handler.DEFAULT_MINIDUMP_DIR
|
529 |
if sys.platform == "linux" and os.path.exists(minidump_dir):
|
530 |
+
dumps = [
|
531 |
+
os.path.join(minidump_dir, dump) for dump in os.listdir(minidump_dir)
|
532 |
+
]
|
533 |
latest = max(dumps, key=os.path.getctime)
|
534 |
ctime = os.path.getctime(latest)
|
535 |
+
creation_time = datetime.datetime.fromtimestamp(ctime).strftime(
|
536 |
+
"%Y-%m-%d %H:%M:%S"
|
537 |
+
)
|
538 |
+
msg = (
|
539 |
+
"\n*** Detected a minidump at {} created on {}, ".format(
|
540 |
+
latest, creation_time
|
541 |
+
)
|
542 |
+
+ "if this is related to your bug please include it when you file a report ***"
|
543 |
+
)
|
544 |
print(msg, file=sys.stderr)
|
545 |
|
546 |
|
547 |
+
if __name__ == "__main__":
|
|
|
548 |
main()
|
plot_utils.py
CHANGED
@@ -30,7 +30,7 @@ def plot_images(imgs, titles=None, cmaps="gray", dpi=100, size=6, pad=0.5):
|
|
30 |
if titles:
|
31 |
ax[i].set_title(titles[i])
|
32 |
fig.tight_layout(pad=pad)
|
33 |
-
|
34 |
return fig
|
35 |
|
36 |
|
@@ -50,7 +50,7 @@ def plot_lines(
|
|
50 |
if not isinstance(point_colors, list):
|
51 |
point_colors = [point_colors] * len(lines)
|
52 |
|
53 |
-
#fig = plt.gcf()
|
54 |
ax = fig.axes
|
55 |
assert len(ax) > max(indices)
|
56 |
axes = [ax[i] for i in indices]
|
@@ -69,7 +69,7 @@ def plot_lines(
|
|
69 |
a.add_line(line)
|
70 |
pts = l.reshape(-1, 2)
|
71 |
a.scatter(pts[:, 1], pts[:, 0], c=pc, s=ps, linewidths=0, zorder=2)
|
72 |
-
|
73 |
return fig
|
74 |
|
75 |
|
@@ -103,5 +103,5 @@ def plot_color_line_matches(lines, fig, lw=2, indices=(0, 1)):
|
|
103 |
linewidth=lw,
|
104 |
)
|
105 |
a.add_line(line)
|
106 |
-
|
107 |
-
return fig
|
|
|
30 |
if titles:
|
31 |
ax[i].set_title(titles[i])
|
32 |
fig.tight_layout(pad=pad)
|
33 |
+
|
34 |
return fig
|
35 |
|
36 |
|
|
|
50 |
if not isinstance(point_colors, list):
|
51 |
point_colors = [point_colors] * len(lines)
|
52 |
|
53 |
+
# fig = plt.gcf()
|
54 |
ax = fig.axes
|
55 |
assert len(ax) > max(indices)
|
56 |
axes = [ax[i] for i in indices]
|
|
|
69 |
a.add_line(line)
|
70 |
pts = l.reshape(-1, 2)
|
71 |
a.scatter(pts[:, 1], pts[:, 0], c=pc, s=ps, linewidths=0, zorder=2)
|
72 |
+
|
73 |
return fig
|
74 |
|
75 |
|
|
|
103 |
linewidth=lw,
|
104 |
)
|
105 |
a.add_line(line)
|
106 |
+
|
107 |
+
return fig
|
requirements.txt
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
opencv-python
|
2 |
matplotlib
|
3 |
-
kornia
|
|
|
1 |
opencv-python
|
2 |
matplotlib
|
3 |
+
git+https://github.com/kornia/kornia
|