zca-whitening / app.py
edgarriba's picture
use kornia io
3412d98
raw
history blame
2.02 kB
import gradio as gr
import torch
import kornia as K
from kornia.core import Tensor
from kornia.geometry.transform import resize
from torchvision.utils import make_grid
eps: float = 0.01
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
def read_image(f_name: str) -> Tensor:
# load the image using the rust backend
img: Tensor = K.io.load_image(file.name, K.io.ImageLoadType.RGB32)
img = img[None] # 1xCxHxW / fp32 / [0, 1]
return resize(img,(50, 50))
def predict(images):
images = [read_image(f.name) for f in f_names]
images = torch.stack(images, dim = 0).to(device)
zca = K.enhance.ZCAWhitening(eps=eps, compute_inv=True)
zca.fit(images)
zca_images = zca(images)
grid_zca = make_grid(zca_images, nrow=3, normalize=True)
return K.tensor_to_image(grid_zca)
title = 'ZCA Whitening with Kornia!'
description = '''[ZCA Whitening](https://paperswithcode.com/method/zca-whitening) is an image preprocessing method that leads to a transformation of data such that the covariance matrix is the identity matrix, leading to decorrelated features:
*Note that you can upload only image files, e.g. jpg, png etc and there sjould be atleast 2 images!*
Learn more about [ZCA Whitening and Kornia](https://kornia.readthedocs.io/en/latest/_modules/kornia/enhance/zca.html)'''
iface = gr.Interface(fn=predict,
inputs=['files', gr.Slider(0.01, 1)],
outputs=gr.Image(),
allow_flagging="never",
title=title,
description=description,
examples=[[
[
'irises.jpg',
'roses.jpg',
'sunflower.jpg',
'violets.jpg',
'chamomile.jpg',
'tulips.jpg',
'Alstroemeria.jpg',
'Carnation.jpg',
'Orchid.jpg',
'Peony.jpg'
]]]
)
if __name__ == "__main__":
iface.launch(show_error=True)