import os from flask import Flask, render_template, request, redirect, url_for,send_from_directory import cv2 import numpy as np from transformers import DetrImageProcessor, DetrForObjectDetection from torchvision.transforms import functional as F from ultralytics import YOLO import torch app = Flask(__name__) UPLOAD_FOLDER = 'uploads' ALLOWED_EXTENSIONS = {'png', 'jpg', 'jpeg', 'gif'} app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER def allowed_file(filename): return '.' in filename and filename.rsplit('.', 1)[1].lower() in ALLOWED_EXTENSIONS @app.route('/uploads/') def uploaded_file(filename): return send_from_directory(app.config['UPLOAD_FOLDER'], filename) @app.route('/', methods=['GET', 'POST']) def index(): annotated_image_url = None if request.method == 'POST': # Load the YOLOv8 model yolo_model = YOLO('yolo/yolov8s.pt') # Load the DETR model processor = DetrImageProcessor.from_pretrained("detr") model = DetrForObjectDetection.from_pretrained("detr") # Check if a file is selected if 'image' not in request.files: return redirect(request.url) image = request.files['image'] # Check if the file has a valid extension if image and allowed_file(image.filename): constant_filename = 'my_uploaded_image.jpg' # Specify the constant name filename = os.path.join(app.config['UPLOAD_FOLDER'], constant_filename) image.save(filename) # Load the image for processing image = cv2.imread(filename) # Perform YOLO object detection and annotation yolo_results = yolo_model(image, save=False) yolo_image = image.copy() yolo_names=yolo_results[0].names for row in yolo_results[0].boxes.data: x1, y1, x2, y2, score, class_id = row.tolist() x1, y1, x2, y2 = map(int, [x1, y1, x2, y2]) class_name = yolo_names.get(int(class_id), 'Unknown') label_text = f"Class: {class_name}, Score: {score:.2f}" box_color = (0, 0, 255) label_color = (255, 255, 255) cv2.rectangle(yolo_image, (x1, y1), (x2, y2), box_color, thickness=2) label_size = cv2.getTextSize(label_text, cv2.FONT_HERSHEY_SIMPLEX, 0.5, 1)[0] label_bottom_left = (x1, y1 - 5) label_top_right = (label_bottom_left[0] + label_size[0], label_bottom_left[1] - label_size[1]) cv2.rectangle(yolo_image, label_bottom_left, label_top_right, box_color, cv2.FILLED) cv2.putText(yolo_image, label_text, (x1, y1 - 5), cv2.FONT_HERSHEY_SIMPLEX, 0.5, label_color, 1, cv2.LINE_AA) annotated_filename = 'annotated_my_uploaded_image.jpg' annotated_filepath = os.path.join(app.config['UPLOAD_FOLDER'], annotated_filename) cv2.imwrite(annotated_filepath, yolo_image) annotated_image_url = url_for('uploaded_file', filename=annotated_filename) # Process the image using the processor inputs = processor(images=image, return_tensors="pt") outputs = model(**inputs) # Convert outputs (bounding boxes and class logits) to COCO API format # Let's only keep detections with score > 0.9 target_sizes = torch.tensor([image.shape[:2:]]) results = processor.post_process_object_detection(outputs, target_sizes=target_sizes, threshold=0.3)[0] # Convert PIL image to NumPy array for OpenCV #image_np = np.array(image) #image_cv2 = cv2.cvtColor(image_np, cv2.COLOR_RGB2BGR) image_cv2 = image.copy() # Define the font for labels font = cv2.FONT_HERSHEY_SIMPLEX font_scale = 0.5 font_thickness = 1 font_color = (255, 255, 255) # White color # Iterate over the results and draw bounding boxes and labels using OpenCV for score, label, box in zip(results["scores"], results["labels"], results["boxes"]): box = [round(i, 2) for i in box.tolist()] # Draw the bounding box box = [int(b) for b in box] # Convert to integers for drawing cv2.rectangle(image_cv2, (box[0], box[1]), (box[2], box[3]), (0, 0, 255), 2) # Red rectangle # Draw the label label_text = f"{model.config.id2label[label.item()]}: {round(score.item(), 3)}" label_size = cv2.getTextSize(label_text, font, font_scale, font_thickness)[0] label_bottom_left = (box[0], box[1] - 5) # Adjust label position label_top_right = (label_bottom_left[0] + label_size[0], label_bottom_left[1] - label_size[1]) cv2.rectangle(image_cv2, label_bottom_left, label_top_right, (0, 0, 255), cv2.FILLED) # Red filled rectangle cv2.putText(image_cv2, label_text, (box[0], box[1] - 5), font, font_scale, font_color, font_thickness, cv2.LINE_AA) annotated_filename = 'dert_annotated_my_uploaded_image.jpg' annotated_filepath = os.path.join(app.config['UPLOAD_FOLDER'], annotated_filename) cv2.imwrite(annotated_filepath, image_cv2) dertannotated_image_url = url_for('uploaded_file', filename=annotated_filename) return render_template('index.html', image1=annotated_image_url ,image2= dertannotated_image_url) return render_template('index.html', image1=annotated_image_url,image2=annotated_image_url) if __name__ == '__main__': app.run(debug=True,port=7860)