asahi417's picture
Update app.py
94aa07d verified
import os
from math import floor
from typing import Optional
import spaces
import torch
import gradio as gr
from transformers import pipeline
from transformers.pipelines.audio_utils import ffmpeg_read
# config
model_name = "kotoba-tech/kotoba-whisper-v2.2"
example_file = "sample_diarization_japanese.mp3"
if torch.cuda.is_available():
pipe = pipeline(
model=model_name,
chunk_length_s=15,
batch_size=16,
torch_dtype=torch.bfloat16,
device="cuda",
model_kwargs={'attn_implementation': 'sdpa'},
trust_remote_code=True
)
else:
pipe = pipeline(model=model_name, chunk_length_s=15, batch_size=16, trust_remote_code=True)
def format_time(start: Optional[float], end: Optional[float]):
def _format_time(seconds: Optional[float]):
if seconds is None:
return "[no timestamp available]"
minutes = floor(seconds / 60)
hours = floor(seconds / 3600)
seconds = seconds - hours * 3600 - minutes * 60
m_seconds = floor(round(seconds - floor(seconds), 1) * 10)
seconds = floor(seconds)
return f'{minutes:02}:{seconds:02}.{m_seconds:01}'
return f"[{_format_time(start)} -> {_format_time(end)}]:"
@spaces.GPU
def get_prediction(inputs, **kwargs):
return pipe(inputs, **kwargs)
def transcribe(inputs: str,
add_punctuation: bool,
add_silence_end: bool,
add_silence_start: bool,
num_speakers: float,
min_speakers: float,
max_speakers: float,
chunk_length_s: float):
if inputs is None:
raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.")
with open(inputs, "rb") as f:
inputs = f.read()
array = ffmpeg_read(inputs, pipe.feature_extractor.sampling_rate)
prediction = get_prediction(
inputs={"array": array, "sampling_rate": pipe.feature_extractor.sampling_rate},
add_punctuation=add_punctuation,
num_speakers=int(num_speakers) if num_speakers != 0 else None,
min_speakers=int(min_speakers) if min_speakers != 0 else None,
max_speakers=int(max_speakers) if max_speakers != 0 else None,
chunk_length_s=int(chunk_length_s) if chunk_length_s != 30 else None,
add_silence_end=0.5 if add_silence_end else None,
add_silence_start=0.5 if add_silence_start else None
)
output = ""
for n, s in enumerate(prediction["speaker_ids"]):
text_timestamped = "\n".join([f"- **{format_time(*c['timestamp'])}** {c['text']}" for c in prediction[f"chunks/{s}"]])
output += f'### Speaker {n+1} \n{prediction[f"text/{s}"]}\n\n{text_timestamped}\n'
return output
description = (f"Transcribe and diarize long-form microphone or audio inputs with the click of a button! Demo uses "
f"Kotoba-Whisper [{model_name}](https://huggingface.co/{model_name}).")
title = f"Audio Transcription and Diarization with {os.path.basename(model_name)}"
shared_config = {"fn": transcribe, "title": title, "description": description, "allow_flagging": "never", "examples": [
[example_file, True, True, True, 0, 0, 0, 30],
[example_file, True, True, True, 4, 0, 0, 30]
]}
o_upload = gr.Markdown()
o_mic = gr.Markdown()
options = [
]
i_upload = gr.Interface(
inputs=[
gr.Audio(sources="upload", type="filepath", label="Audio file"),
gr.Checkbox(label="add punctuation", value=True),
gr.Checkbox(label="add silence at the end", value=True),
gr.Checkbox(label="add silence at the start", value=True),
gr.Slider(0, 10, label="num speakers (set 0 for auto-detect mode)", value=0, step=1),
gr.Slider(0, 10, label="min speakers (set 0 for auto-detect mode)", value=0, step=1),
gr.Slider(0, 10, label="max speakers (set 0 for auto-detect mode)", value=0, step=1),
gr.Slider(5, 30, label="chunk length for ASR", value=30, step=1),
],
outputs=gr.Markdown(),
**shared_config
)
i_mic = gr.Interface(
inputs=[
gr.Audio(sources="microphone", type="filepath", label="Microphone input"),
gr.Checkbox(label="add punctuation", value=True),
gr.Checkbox(label="add silence at the end", value=True),
gr.Checkbox(label="add silence at the start", value=True),
gr.Slider(0, 10, label="num speakers (set 0 for auto-detect mode)", value=0, step=1),
gr.Slider(0, 10, label="min speakers (set 0 for auto-detect mode)", value=0, step=1),
gr.Slider(0, 10, label="max speakers (set 0 for auto-detect mode)", value=0, step=1),
gr.Slider(5, 30, label="chunk length for ASR", value=30, step=1),
],
outputs=gr.Markdown(),
**shared_config
)
with gr.Blocks() as demo:
gr.TabbedInterface([i_upload, i_mic], ["Audio file", "Microphone"])
demo.queue(api_open=False, default_concurrency_limit=40).launch(show_api=False, show_error=True)