Spaces:
Running
on
Zero
Running
on
Zero
init
Browse files- README.md +8 -1
- app.py +85 -0
- packages.txt +1 -0
- requirements.txt +6 -0
- sample_diarization_japanese.mp3 +0 -0
README.md
CHANGED
@@ -4,9 +4,16 @@ emoji: π
|
|
4 |
colorFrom: gray
|
5 |
colorTo: pink
|
6 |
sdk: gradio
|
7 |
-
sdk_version:
|
8 |
app_file: app.py
|
9 |
pinned: false
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
---
|
11 |
|
12 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
4 |
colorFrom: gray
|
5 |
colorTo: pink
|
6 |
sdk: gradio
|
7 |
+
sdk_version: 4.39.0
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
+
hf_oauth: true
|
11 |
+
hf_oauth_expiration_minutes: 480
|
12 |
+
hf_oauth_scopes:
|
13 |
+
- read-repos
|
14 |
+
- write-repos
|
15 |
+
- manage-repos
|
16 |
+
- inference-api
|
17 |
---
|
18 |
|
19 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
ADDED
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from math import floor
|
3 |
+
from typing import Optional
|
4 |
+
|
5 |
+
import spaces
|
6 |
+
import torch
|
7 |
+
import gradio as gr
|
8 |
+
from transformers import pipeline
|
9 |
+
from transformers.pipelines.audio_utils import ffmpeg_read
|
10 |
+
|
11 |
+
# config
|
12 |
+
model_name = "kotoba-tech/kotoba-whisper-v2.2"
|
13 |
+
example_file = "sample_diarization_japanese.mp3"
|
14 |
+
|
15 |
+
# device setting
|
16 |
+
if torch.cuda.is_available():
|
17 |
+
torch_dtype = torch.bfloat16
|
18 |
+
device = "cuda"
|
19 |
+
model_kwargs = {'attn_implementation': 'sdpa'}
|
20 |
+
else:
|
21 |
+
torch_dtype = torch.float32
|
22 |
+
device = "cpu"
|
23 |
+
model_kwargs = {}
|
24 |
+
|
25 |
+
# define the pipeline
|
26 |
+
pipe = pipeline(
|
27 |
+
model=model_name,
|
28 |
+
chunk_length_s=15,
|
29 |
+
batch_size=16,
|
30 |
+
torch_dtype=torch_dtype,
|
31 |
+
device=device,
|
32 |
+
model_kwargs=model_kwargs,
|
33 |
+
trust_remote_code=True
|
34 |
+
)
|
35 |
+
sampling_rate = pipe.feature_extractor.sampling_rate
|
36 |
+
|
37 |
+
|
38 |
+
def format_time(start: Optional[float], end: Optional[float]):
|
39 |
+
|
40 |
+
def _format_time(seconds: Optional[float]):
|
41 |
+
if seconds is None:
|
42 |
+
return "[no timestamp available]"
|
43 |
+
minutes = floor(seconds / 60)
|
44 |
+
hours = floor(seconds / 3600)
|
45 |
+
seconds = seconds - hours * 3600 - minutes * 60
|
46 |
+
m_seconds = floor(round(seconds - floor(seconds), 1) * 10)
|
47 |
+
seconds = floor(seconds)
|
48 |
+
return f'{minutes:02}:{seconds:02}.{m_seconds:01}'
|
49 |
+
|
50 |
+
return f"[{_format_time(start)} -> {_format_time(end)}]:"
|
51 |
+
|
52 |
+
|
53 |
+
@spaces.GPU
|
54 |
+
def get_prediction(inputs):
|
55 |
+
return pipe(inputs, generate_kwargs={"language": "ja", "task": "transcribe"})
|
56 |
+
|
57 |
+
|
58 |
+
def transcribe(inputs: str):
|
59 |
+
if inputs is None:
|
60 |
+
raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.")
|
61 |
+
with open(inputs, "rb") as f:
|
62 |
+
inputs = f.read()
|
63 |
+
prediction = get_prediction({"array": ffmpeg_read(inputs, sampling_rate), "sampling_rate": sampling_rate})
|
64 |
+
output = ""
|
65 |
+
for n, s in enumerate(prediction["speakers"]):
|
66 |
+
text_timestamped = "\n".join([f"- **{format_time(*c['timestamp'])}** {c['text']}" for c in prediction[f"chunks/{s}"]])
|
67 |
+
output += f'### Speaker {n+1} \n{text_timestamped}\n'
|
68 |
+
return output
|
69 |
+
|
70 |
+
|
71 |
+
description = (f"Transcribe and diarize long-form microphone or audio inputs with the click of a button! Demo uses "
|
72 |
+
f"Kotoba-Whisper [{model_name}](https://huggingface.co/{model_name}).")
|
73 |
+
title = f"Audio Transcription and Diarization with {os.path.basename(model_name)}"
|
74 |
+
shared_config = {"fn": transcribe, "title": title, "description": description, "allow_flagging": "never", "examples": [example_file]}
|
75 |
+
o_upload = gr.Markdown()
|
76 |
+
o_mic = gr.Markdown()
|
77 |
+
i_upload = gr.Interface(
|
78 |
+
inputs=[gr.Audio(sources="upload", type="filepath", label="Audio file")], outputs=gr.Markdown(), **shared_config
|
79 |
+
)
|
80 |
+
i_mic = gr.Interface(
|
81 |
+
inputs=[gr.Audio(sources="microphone", type="filepath", label="Microphone input")], outputs=gr.Markdown(), **shared_config
|
82 |
+
)
|
83 |
+
with gr.Blocks() as demo:
|
84 |
+
gr.TabbedInterface([i_upload, i_mic], ["Audio file", "Microphone"])
|
85 |
+
demo.queue(api_open=False, default_concurrency_limit=40).launch(show_api=False, show_error=True)
|
packages.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
ffmpeg
|
requirements.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
git+https://github.com/huggingface/transformers
|
2 |
+
git+https://github.com/huggingface/diarizers
|
3 |
+
torchaudio
|
4 |
+
torch
|
5 |
+
punctuators==0.0.5
|
6 |
+
pyannote.audio
|
sample_diarization_japanese.mp3
ADDED
Binary file (780 kB). View file
|
|