Spaces:
Running
on
Zero
Running
on
Zero
init
Browse files
app.py
CHANGED
@@ -5,35 +5,24 @@ from typing import Optional
|
|
5 |
import spaces
|
6 |
import torch
|
7 |
import gradio as gr
|
8 |
-
import numpy as np
|
9 |
from transformers import pipeline
|
10 |
from transformers.pipelines.audio_utils import ffmpeg_read
|
11 |
|
12 |
# config
|
13 |
model_name = "kotoba-tech/kotoba-whisper-v2.2"
|
14 |
example_file = "sample_diarization_japanese.mp3"
|
15 |
-
|
16 |
-
# device setting
|
17 |
if torch.cuda.is_available():
|
18 |
-
|
19 |
-
|
20 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
else:
|
22 |
-
|
23 |
-
device = "cpu"
|
24 |
-
model_kwargs = {}
|
25 |
-
|
26 |
-
# define the pipeline
|
27 |
-
pipe = pipeline(
|
28 |
-
model=model_name,
|
29 |
-
chunk_length_s=15,
|
30 |
-
batch_size=16,
|
31 |
-
torch_dtype=torch_dtype,
|
32 |
-
device=device,
|
33 |
-
model_kwargs=model_kwargs,
|
34 |
-
trust_remote_code=True
|
35 |
-
)
|
36 |
-
sampling_rate = pipe.feature_extractor.sampling_rate
|
37 |
|
38 |
|
39 |
def format_time(start: Optional[float], end: Optional[float]):
|
@@ -52,23 +41,35 @@ def format_time(start: Optional[float], end: Optional[float]):
|
|
52 |
|
53 |
|
54 |
@spaces.GPU
|
55 |
-
def get_prediction(inputs):
|
56 |
-
return pipe(inputs,
|
57 |
|
58 |
|
59 |
-
def transcribe(inputs: str
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
if inputs is None:
|
61 |
raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.")
|
62 |
with open(inputs, "rb") as f:
|
63 |
inputs = f.read()
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
output = ""
|
69 |
-
for n, s in enumerate(prediction["
|
70 |
text_timestamped = "\n".join([f"- **{format_time(*c['timestamp'])}** {c['text']}" for c in prediction[f"chunks/{s}"]])
|
71 |
-
output += f'### Speaker {n+1} \n{text_timestamped}\n'
|
72 |
return output
|
73 |
|
74 |
|
@@ -78,11 +79,34 @@ title = f"Audio Transcription and Diarization with {os.path.basename(model_name)
|
|
78 |
shared_config = {"fn": transcribe, "title": title, "description": description, "allow_flagging": "never", "examples": [example_file]}
|
79 |
o_upload = gr.Markdown()
|
80 |
o_mic = gr.Markdown()
|
|
|
|
|
|
|
81 |
i_upload = gr.Interface(
|
82 |
-
inputs=[
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
)
|
84 |
i_mic = gr.Interface(
|
85 |
-
inputs=[
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
86 |
)
|
87 |
with gr.Blocks() as demo:
|
88 |
gr.TabbedInterface([i_upload, i_mic], ["Audio file", "Microphone"])
|
|
|
5 |
import spaces
|
6 |
import torch
|
7 |
import gradio as gr
|
|
|
8 |
from transformers import pipeline
|
9 |
from transformers.pipelines.audio_utils import ffmpeg_read
|
10 |
|
11 |
# config
|
12 |
model_name = "kotoba-tech/kotoba-whisper-v2.2"
|
13 |
example_file = "sample_diarization_japanese.mp3"
|
|
|
|
|
14 |
if torch.cuda.is_available():
|
15 |
+
pipe = pipeline(
|
16 |
+
model=model_name,
|
17 |
+
chunk_length_s=15,
|
18 |
+
batch_size=16,
|
19 |
+
torch_dtype=torch.bfloat16,
|
20 |
+
device="cuda",
|
21 |
+
model_kwargs={'attn_implementation': 'sdpa'},
|
22 |
+
trust_remote_code=True
|
23 |
+
)
|
24 |
else:
|
25 |
+
pipe = pipeline(model=model_name, chunk_length_s=15, batch_size=16, trust_remote_code=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
|
27 |
|
28 |
def format_time(start: Optional[float], end: Optional[float]):
|
|
|
41 |
|
42 |
|
43 |
@spaces.GPU
|
44 |
+
def get_prediction(inputs, **kwargs):
|
45 |
+
return pipe(inputs, **kwargs)
|
46 |
|
47 |
|
48 |
+
def transcribe(inputs: str,
|
49 |
+
add_punctuation: bool,
|
50 |
+
num_speakers: Optional[float],
|
51 |
+
min_speakers: Optional[float],
|
52 |
+
max_speakers: Optional[float],
|
53 |
+
add_silence_end: Optional[float],
|
54 |
+
add_silence_start: Optional[float]):
|
55 |
if inputs is None:
|
56 |
raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.")
|
57 |
with open(inputs, "rb") as f:
|
58 |
inputs = f.read()
|
59 |
+
array = ffmpeg_read(inputs, pipe.feature_extractor.sampling_rate)
|
60 |
+
prediction = get_prediction(
|
61 |
+
inputs={"array": array, "sampling_rate": pipe.feature_extractor.sampling_rate},
|
62 |
+
add_punctuation=add_punctuation,
|
63 |
+
num_speakers=int(num_speakers) if num_speakers != 0 else None,
|
64 |
+
min_speakers=int(min_speakers) if min_speakers != 0 else None,
|
65 |
+
max_speakers=int(max_speakers) if max_speakers != 0 else None,
|
66 |
+
add_silence_end=add_silence_end if add_silence_end != 0 else None,
|
67 |
+
add_silence_start=add_silence_start if add_silence_start != 0 else None
|
68 |
+
)
|
69 |
output = ""
|
70 |
+
for n, s in enumerate(prediction["speaker_ids"]):
|
71 |
text_timestamped = "\n".join([f"- **{format_time(*c['timestamp'])}** {c['text']}" for c in prediction[f"chunks/{s}"]])
|
72 |
+
output += f'### Speaker {n+1} \n{prediction[f"text/{s}"]}\n\n{text_timestamped}\n'
|
73 |
return output
|
74 |
|
75 |
|
|
|
79 |
shared_config = {"fn": transcribe, "title": title, "description": description, "allow_flagging": "never", "examples": [example_file]}
|
80 |
o_upload = gr.Markdown()
|
81 |
o_mic = gr.Markdown()
|
82 |
+
options = [
|
83 |
+
|
84 |
+
]
|
85 |
i_upload = gr.Interface(
|
86 |
+
inputs=[
|
87 |
+
gr.Audio(sources="upload", type="filepath", label="Audio file"),
|
88 |
+
gr.Checkbox(label="add punctuation", value=True),
|
89 |
+
gr.Slider(0, 10, label="num speakers (set 0 for auto-detect mode)", value=0, step=1),
|
90 |
+
gr.Slider(0, 10, label="min speakers (set 0 for auto-detect mode)", value=0, step=1),
|
91 |
+
gr.Slider(0, 10, label="max speakers (set 0 for auto-detect mode)", value=0, step=1),
|
92 |
+
gr.Slider(0, 0.5, label="silence at the end", value=0.5, step=0.05),
|
93 |
+
gr.Slider(0, 0.5, label="silence at the start", value=0.5, step=0.05),
|
94 |
+
],
|
95 |
+
outputs=gr.Markdown(),
|
96 |
+
**shared_config
|
97 |
)
|
98 |
i_mic = gr.Interface(
|
99 |
+
inputs=[
|
100 |
+
gr.Audio(sources="microphone", type="filepath", label="Microphone input"),
|
101 |
+
gr.Checkbox(label="add punctuation", value=True),
|
102 |
+
gr.Slider(0, 10, label="num speakers (set 0 for auto-detect mode)", value=0, step=1),
|
103 |
+
gr.Slider(0, 10, label="min speakers (set 0 for auto-detect mode)", value=0, step=1),
|
104 |
+
gr.Slider(0, 10, label="max speakers (set 0 for auto-detect mode)", value=0, step=1),
|
105 |
+
gr.Slider(0, 0.5, label="silence at the end", value=0.5, step=0.05),
|
106 |
+
gr.Slider(0, 0.5, label="silence at the start", value=0.5, step=0.05),
|
107 |
+
],
|
108 |
+
outputs=gr.Markdown(),
|
109 |
+
**shared_config
|
110 |
)
|
111 |
with gr.Blocks() as demo:
|
112 |
gr.TabbedInterface([i_upload, i_mic], ["Audio file", "Microphone"])
|