File size: 9,552 Bytes
565faca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
# Copyright (c) Kotoba Technologies, Inc. and affiliates.
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without modification, are permitted
# provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this list of
# conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice, this
# list of conditions and the following disclaimer in the documentation and/or other
# materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its contributors
# may be used to endorse or promote products derived from this software without
# specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY EXPRESS OR
# IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
# FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
# CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
# CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
from dataclasses import dataclass
from functools import reduce
from math import gcd
from typing import Optional, Tuple

import torch
import torch.nn as nn
from torch import Tensor
from torch.nn import functional as F

from fam.llm.utils import get_default_dtype

import logging

# Adjust the logging level
logger = logging.getLogger("torch")
logger.setLevel(logging.ERROR)


def find_multiple(n: int, *args: Tuple[int]) -> int:
    k = reduce(lambda x, y: x * y // gcd(x, y), args + (1,))
    if n % k == 0:
        return n
    return n + k - (n % k)


@dataclass
class ModelArgs:
    block_size: int = 2048
    vocab_size: int = 32000
    n_layer: int = 32
    n_head: int = 32
    dim: int = 4096
    speaker_emb_dim: int = 256
    intermediate_size: int = None
    n_local_heads: int = -1
    head_dim: int = 64
    norm_eps: float = 1e-5
    dtype: torch.dtype = torch.bfloat16

    def __post_init__(self):
        if self.n_local_heads == -1:
            self.n_local_heads = self.n_head
        if self.intermediate_size is None:
            hidden_dim = 4 * self.dim
            n_hidden = int(2 * hidden_dim / 3)
            self.intermediate_size = find_multiple(n_hidden, 256)
        self.head_dim = self.dim // self.n_head

        self.dtype = {"float16": torch.float16, "bfloat16": torch.bfloat16}[get_default_dtype()]

    @classmethod
    def from_name(cls, name: str):
        if name in transformer_configs:
            return cls(**transformer_configs[name])
        # fuzzy search
        config = [config for config in transformer_configs if config in str(name).upper() or config in str(name)]
        assert len(config) == 1, name
        return cls(**transformer_configs[config[0]])


transformer_configs = {
    "kotoba-speech-v0.1": dict(
        n_layer=24,
        n_head=16,
        dim=2048,
        vocab_size=2562,
    ),
}


class KVCache(nn.Module):
    def __init__(self, max_batch_size, max_seq_length, n_heads, head_dim, dtype):
        super().__init__()
        cache_shape = (max_batch_size, n_heads, max_seq_length, head_dim)
        self.register_buffer("k_cache", torch.zeros(cache_shape, dtype=dtype))
        self.register_buffer("v_cache", torch.zeros(cache_shape, dtype=dtype))

    def update(self, input_pos, k_val, v_val):
        # input_pos: [S], k_val: [B, H, S, D]
        assert input_pos.shape[0] == k_val.shape[2]

        k_out = self.k_cache
        v_out = self.v_cache
        k_out[:, :, input_pos] = k_val
        v_out[:, :, input_pos] = v_val

        return k_out, v_out


class Transformer(nn.Module):
    def __init__(self, config: ModelArgs) -> None:
        super().__init__()
        self.config = config

        self.tok_embeddings = nn.Embedding(config.vocab_size, config.dim)
        self.pos_embeddings = nn.Embedding(config.block_size, config.dim)
        self.speaker_cond_pos = nn.Linear(config.speaker_emb_dim, config.dim, bias=False)
        self.layers = nn.ModuleList(TransformerBlock(config) for _ in range(config.n_layer))
        self.norm = RMSNorm(config.dim, eps=config.norm_eps)
        self.output = nn.Linear(config.dim, config.vocab_size, bias=False)

        self.mask_cache: Optional[Tensor] = None
        self.max_batch_size = -1
        self.max_seq_length = -1

    def setup_spk_cond_mask(self):
        self.spk_cond_mask = torch.zeros((2, 1, self.config.dim), dtype=torch.bool)
        self.spk_cond_mask[0] = 1

    def setup_caches(self, max_batch_size, max_seq_length):
        if self.max_seq_length >= max_seq_length and self.max_batch_size >= max_batch_size:
            return
        head_dim = self.config.dim // self.config.n_head
        max_seq_length = find_multiple(max_seq_length, 8)
        self.max_seq_length = max_seq_length
        self.max_batch_size = max_batch_size
        for b in self.layers:
            b.attention.kv_cache = KVCache(
                max_batch_size, max_seq_length, self.config.n_local_heads, head_dim, dtype=self.config.dtype
            )

        self.causal_mask = torch.tril(torch.ones(self.max_seq_length, self.max_seq_length, dtype=torch.bool))

    def forward(self, idx: Tensor, spk_emb: Tensor, input_pos: Tensor) -> Tensor:
        mask = self.causal_mask[None, None, input_pos]
        x = (
            self.tok_embeddings(idx)
            + self.pos_embeddings(input_pos)
            # masking for speaker condition free guidance
            + self.speaker_cond_pos(spk_emb) * self.spk_cond_mask
        )

        for i, layer in enumerate(self.layers):
            x = layer(x, input_pos, mask)
        x = self.norm(x)
        logits = self.output(x)
        return logits

    @classmethod
    def from_name(cls, name: str):
        return cls(ModelArgs.from_name(name))


class TransformerBlock(nn.Module):
    def __init__(self, config: ModelArgs) -> None:
        super().__init__()
        self.attention = Attention(config)
        self.feed_forward = FeedForward(config)
        self.ffn_norm = RMSNorm(config.dim, config.norm_eps)
        self.attention_norm = RMSNorm(config.dim, config.norm_eps)

    def forward(self, x: Tensor, input_pos: Tensor, mask: Tensor) -> Tensor:
        h = x + self.attention(self.attention_norm(x), mask, input_pos)
        out = h + self.feed_forward(self.ffn_norm(h))
        return out


class Attention(nn.Module):
    def __init__(self, config: ModelArgs):
        super().__init__()
        assert config.dim % config.n_head == 0

        total_head_dim = (config.n_head + 2 * config.n_local_heads) * config.head_dim
        # key, query, value projections for all heads, but in a batch
        self.wqkv = nn.Linear(config.dim, total_head_dim, bias=False)
        self.wo = nn.Linear(config.dim, config.dim, bias=False)
        self.kv_cache = None

        self.n_head = config.n_head
        self.head_dim = config.head_dim
        self.n_local_heads = config.n_local_heads
        self.dim = config.dim

    def forward(
        self,
        x: Tensor,
        mask: Tensor,
        input_pos: Optional[Tensor] = None,
    ) -> Tensor:
        bsz, seqlen, _ = x.shape

        kv_size = self.n_local_heads * self.head_dim
        q, k, v = self.wqkv(x).split([self.dim, kv_size, kv_size], dim=-1)

        q = q.view(bsz, seqlen, self.n_head, self.head_dim)
        k = k.view(bsz, seqlen, self.n_local_heads, self.head_dim)
        v = v.view(bsz, seqlen, self.n_local_heads, self.head_dim)

        q, k, v = map(lambda x: x.transpose(1, 2), (q, k, v))

        if self.kv_cache is not None:
            k, v = self.kv_cache.update(input_pos, k, v)

        k = k.repeat_interleave(self.n_head // self.n_local_heads, dim=1)
        v = v.repeat_interleave(self.n_head // self.n_local_heads, dim=1)
        y = F.scaled_dot_product_attention(q, k, v, attn_mask=mask, dropout_p=0.0)

        y = y.transpose(1, 2).contiguous().view(bsz, seqlen, self.dim)

        y = self.wo(y)
        return y


class SwiGLU(nn.Module):
    def __init__(self, config: ModelArgs) -> None:
        super().__init__()
        self.w1 = nn.Linear(config.dim, config.intermediate_size, bias=False)
        self.w3 = nn.Linear(config.dim, config.intermediate_size, bias=False)

    def forward(self, x: Tensor) -> Tensor:
        return F.silu(self.w1(x)) * self.w3(x)


class FeedForward(nn.Module):
    def __init__(self, config: ModelArgs) -> None:
        super().__init__()
        self.swiglu = SwiGLU(config)
        self.w2 = nn.Linear(config.intermediate_size, config.dim, bias=False)

    def forward(self, x: Tensor) -> Tensor:
        return self.w2(self.swiglu(x))


class RMSNorm(nn.Module):
    def __init__(self, dim: int, eps: float = 1e-5):
        super().__init__()
        self.eps = eps
        self.weight = nn.Parameter(torch.ones(dim))

    def _norm(self, x):
        return x * torch.rsqrt(torch.mean(x * x, dim=-1, keepdim=True) + self.eps)

    def forward(self, x: Tensor) -> Tensor:
        output = self._norm(x.float()).type_as(x)
        return output * self.weight