Spaces:
Running
on
T4
Running
on
T4
File size: 26,397 Bytes
565faca |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 |
import dataclasses
import hashlib
import json
import os
import pathlib
import shutil
import subprocess
import tempfile
import time
from contextlib import nullcontext
from dataclasses import dataclass
from typing import List, Literal, Optional, Tuple, Type, Union
import torch
import tqdm
import tqdm.contrib.concurrent
import tyro
from huggingface_hub import snapshot_download
from fam.llm.adapters import FlattenedInterleavedEncodec2Codebook, TiltedEncodec
from fam.llm.decoders import Decoder, EncodecDecoder
from fam.llm.enhancers import BaseEnhancer, get_enhancer
from fam.llm.model import GPT, GPTConfig
from fam.llm.utils import check_audio_file, get_default_dtype, normalize_text
from fam.quantiser.audio.speaker_encoder.model import SpeakerEncoder
from fam.quantiser.text.tokenise import TrainedBPETokeniser
@dataclass
class InferenceConfig:
ckpt_path: str # path to checkpoint
output_dir: str
num_samples: int = 10 # number of samples to draw
seed: int = 1337 # random seed
device: str = "cuda"
dtype: str = "bfloat16"
compile: bool = False
init_from: str = "resume" # either 'resume' (from an out_dir) or a gpt2 variant (e.g. 'gpt2-xl')
def __str__(self):
field_strs = []
for field in dataclasses.fields(self):
value = getattr(self, field.name)
field_strs.append(f" {field.name}: {value}")
return "InferenceConfig:\n" + "\n".join(field_strs)
class Model:
def __init__(
self,
config: InferenceConfig,
tokenizer_cls: Type[TrainedBPETokeniser],
decoder_cls: Type[Decoder],
data_adapter_fn,
use_kv_cache: Optional[Literal["vanilla"]] = None,
):
# TODO: disentangle the encodec stuff and numbers etc with rest of this code (esp at encoder-only / second stage model inference)
# TODO: remove magic number
self._encodec_codes_pad_token = 1024
self._num_encodec_codebooks = 8
self.config = config
self.use_kv_cache = use_kv_cache
torch.manual_seed(config.seed)
torch.cuda.manual_seed(config.seed)
torch.backends.cuda.matmul.allow_tf32 = True if config.dtype != "float32" else False # allow tf32 on matmul
torch.backends.cudnn.allow_tf32 = True if config.dtype != "float32" else False # allow tf32 on cudnn
device_type = "cuda" if "cuda" in config.device else "cpu" # for later use in torch.autocast
self.ptdtype = {
"float32": torch.float32,
"tfloat32": torch.float32,
"bfloat16": torch.bfloat16,
"float16": torch.float16,
}[config.dtype]
self._ctx = (
nullcontext() if device_type == "cpu" else torch.amp.autocast(device_type=device_type, dtype=self.ptdtype)
)
self.use_bpe_tokenizer = False
self.load_meta = None
self.speaker_cond = None
self.meta = None
self.model = None
self.checkpoint_config = None
self.vocab_sizes = None
self.smodel = None
self._init_model()
self.tokenizer = tokenizer_cls(**self.meta["tokenizer"])
self.decoder = decoder_cls(
tokeniser_decode_fn=self.tokenizer.decode,
output_dir=self.config.output_dir,
data_adapter_fn=data_adapter_fn,
)
def _init_model(self):
if self.config.init_from == "resume":
# init from a model saved in a specific directory
checkpoint = torch.load(self.config.ckpt_path, map_location=self.config.device)
self.vocab_sizes = checkpoint["model_args"]["vocab_sizes"]
self.load_meta = False
self.speaker_cond = False
if "config" in checkpoint:
self.checkpoint_config = checkpoint["config"]
self.meta = checkpoint["meta"]
load_meta = True
if load_meta:
self.use_bpe_tokenizer = "stoi" not in self.meta or "itos" not in self.meta
self.speaker_cond = self.meta.get("speaker_cond")
if self.speaker_cond:
speaker_emb_size = self.meta["speaker_emb_size"]
model_args = checkpoint["model_args"]
if "causal" in self.checkpoint_config and self.checkpoint_config["causal"] is False:
self._encodec_ctx_window = model_args["block_size"]
gptconf = GPTConfig(**model_args)
# TODO: rename `speaker_emb_dim` to `speaker_emb_size`.
self.model = GPT(gptconf, speaker_emb_dim=speaker_emb_size if self.speaker_cond else None)
state_dict = checkpoint["model"]
unwanted_prefix = "_orig_mod."
for k, v in list(state_dict.items()):
if k.startswith(unwanted_prefix):
state_dict[k[len(unwanted_prefix) :]] = state_dict.pop(k)
self.model.load_state_dict(state_dict)
# model
self.model.eval()
self.model.to(self.config.device)
if self.config.compile:
from einops._torch_specific import allow_ops_in_compiled_graph
allow_ops_in_compiled_graph()
self.model = torch.compile(self.model) # type: ignore
if self.use_kv_cache is not None:
if "causal" in self.checkpoint_config and self.checkpoint_config["causal"] is False:
raise Exception("kv_cache not supported for non-causal models!")
if self.use_kv_cache == "vanilla":
self.model.enable_kv_cache()
else:
raise NotImplementedError(f"kv_cache type {self.use_kv_cache} not implemented!")
def causal_sample(
self,
*,
texts: list[str],
batch_size: int,
max_new_tokens: int,
temperature: Optional[float],
top_k: Optional[int],
top_p: Optional[float],
speaker_embs: Optional[torch.Tensor] = None,
guidance_scale: Optional[float] = None,
) -> list[torch.Tensor]:
"""
Returns list of torch.Tensors of tokens. Each tensor is of shape (1, c, t) where c is the number of codebooks.
Any flattening / inteleaving / tilting gets reversed before the output is returned.
"""
if speaker_embs is not None:
assert len(texts) == len(speaker_embs)
encoded_texts = [self.tokenizer.encode(text) for text in texts]
## create multiple hierarchies and get seq_lens
seq_lens = []
xs = []
for i, encoded_text in enumerate(encoded_texts):
encoded_text = torch.tensor([encoded_text], dtype=torch.long, device=self.config.device)
# TODO: remove magic number
xs.append(
torch.cat(
# [1st hierarchy of text, *remaining hierarchies of padded tokens]
# TODO: self.vocab_sizes should be from the model config?
[encoded_text, *[torch.ones_like(encoded_text) * 1024] * (len(self.vocab_sizes) - 1)],
dim=0,
).unsqueeze(0)
) # b x [(b=1, c, t)]
seq_lens.append(xs[-1].shape[-1])
max_len = max(seq_lens)
assert len(xs) == len(seq_lens)
## equalise the shapes in the batch. we can use torch.zeros as tokens > seq_lens will be masked out.
x = torch.zeros((len(encoded_texts), xs[0].shape[1], max_len), dtype=torch.long, device=self.config.device)
for i, _xs in enumerate(xs):
assert _xs.shape[-1] == seq_lens[i]
x[i, :, : seq_lens[i]] = _xs
## check that the input is correct
for i in range(x.shape[0]):
assert x[i, 0, : seq_lens[i]].tolist() == encoded_texts[i]
# TODO: remove magic number
if x.shape[1] > 1:
assert set(x[i, 1, : seq_lens[i]].tolist()) == set([1024])
assert x.shape[0] == speaker_embs.shape[0] if speaker_embs is not None else True
if self.speaker_cond is False:
speaker_embs = None
# run sampling loop
with torch.no_grad():
with self._ctx: # type: ignore
to_return = []
for k in range(self.config.num_samples):
assert seq_lens is not None
assert batch_size is not None
if max(seq_lens) + max_new_tokens >= self.model.config.block_size:
raise Exception(
f"max_new_tokens {max_new_tokens} too large! Choose {self.model.config.block_size - max(seq_lens) - 1} instead."
)
y = self.model.generate(
x,
max_new_tokens,
seq_lens=seq_lens,
temperature=temperature,
top_k=top_k,
top_p=top_p,
speaker_embs=speaker_embs,
batch_size=batch_size,
guidance_scale=guidance_scale,
dtype=self.ptdtype,
end_of_audio_token=self.tokenizer.offset - 1,
end_of_text_token=self.tokenizer.eot_token,
)
for i in range(len(y)):
to_return.append(self.decoder.decode(tokens=y[i].tolist(), causal=True))
return to_return
def non_causal_sample(
self,
*,
texts: list[str],
encodec_tokens: list[torch.Tensor],
batch_size: int,
top_k: Optional[int],
temperature: Optional[float],
speaker_embs: Optional[torch.Tensor] = None,
) -> list[str]:
"""
Returns paths to saved audio files.
"""
if speaker_embs is not None:
assert len(texts) == len(speaker_embs)
encoded_texts = [self.tokenizer.encode(text) for text in texts]
# setup input
# TODO: same code is used during data prep. refactor
padded_hierarchies_inputs = []
for encoded_text, encodec_token in zip(encoded_texts, encodec_tokens):
x = torch.tensor(encoded_text, dtype=torch.long, device=self.config.device)[
None, None, ...
] # (b=1, c=1, t)
# TODO: should only happen if decoder is encodecdeocder?
assert encodec_token.shape[0] == 1
encodec_token = encodec_token[0].tolist() # (b=1, c, t) -> (c, t)
assert len(encodec_token) >= 1 and len(encodec_token) <= self._num_encodec_codebooks
## setup hierarchies of tokens
# TODO: refactor and merge with code in processing.py
text_tokens = encoded_text # (t,)
hierarchies_in = []
hierarchies_in.append(text_tokens + encodec_token[0] + [self._encodec_codes_pad_token])
hierarchies_in.append(
[self._encodec_codes_pad_token] * len(text_tokens) + encodec_token[1] + [self._encodec_codes_pad_token]
)
## adding padding / cutting to the right size as needed
# TODO: refactor and merge with code in processing.py
padded_hierarchies_input = []
for _, t_hierarchy in enumerate(hierarchies_in):
assert len(t_hierarchy) == len(hierarchies_in[0])
if len(t_hierarchy) < self._encodec_ctx_window:
padded_hierarchies_input.append(
t_hierarchy + [self._encodec_codes_pad_token] * (self._encodec_ctx_window - len(t_hierarchy))
)
elif len(t_hierarchy) > self._encodec_ctx_window:
padded_hierarchies_input.append(t_hierarchy[: self._encodec_ctx_window])
else:
padded_hierarchies_input.append(t_hierarchy)
padded_hierarchies_inputs.append(padded_hierarchies_input)
## check that the input is correct
in_x = torch.tensor(padded_hierarchies_inputs, dtype=torch.long, device=self.config.device)
assert in_x.shape[0] == speaker_embs.shape[0] if speaker_embs is not None else True
if self.speaker_cond is False:
speaker_embs = None
# run sampling loop
with torch.no_grad():
with self._ctx: # type: ignore
to_return = []
for k in range(self.config.num_samples):
y = self.model.generate(
in_x,
None,
temperature=temperature,
top_k=top_k,
# TODO: handle separate top_p for this model explicitly
top_p=None,
speaker_embs=speaker_embs,
batch_size=batch_size,
guidance_scale=None,
)
b_tokens = torch.cat([in_x, y], dim=1)
for tokens in b_tokens:
try:
to_return.append(self.decoder.decode(tokens=tokens.tolist(), causal=False))
except Exception as e:
print("failed to run MBD.")
print(f"reason: {str(e)}")
to_return.append(None)
return to_return
def __call__(
self,
*,
texts: list[str],
batch_size: int,
max_new_tokens: Optional[int],
top_k: Optional[int],
top_p: Optional[float],
temperature: Optional[float],
encodec_tokens: Optional[list[torch.Tensor]] = None,
speaker_embs: Optional[torch.Tensor] = None,
guidance_scale: Optional[float] = None,
):
if self.checkpoint_config.get("causal", True):
return self.causal_sample(
texts=texts,
batch_size=batch_size,
speaker_embs=speaker_embs,
guidance_scale=guidance_scale,
max_new_tokens=max_new_tokens,
top_k=top_k,
top_p=top_p,
temperature=temperature,
)
else:
assert encodec_tokens is not None
assert guidance_scale is None
assert max_new_tokens is None
assert top_p is None
return self.non_causal_sample(
texts=texts,
encodec_tokens=encodec_tokens,
batch_size=batch_size,
speaker_embs=speaker_embs,
top_k=top_k,
temperature=temperature,
)
def save_result_metadata(wav_path, ref_path, text, first_stage_ckpt_path, second_stage_ckpt_path):
if first_stage_ckpt_path is None or second_stage_ckpt_path is None:
return
json.dump(
{
"speaker": ref_path,
"text": text,
},
pathlib.Path(str(wav_path) + ".json").open("w"),
)
def get_cached_file(file_or_uri: str):
"""
If it's an s3 file, download it to a local temporary file and return that path.
Otherwise return the path as is.
"""
is_uri = file_or_uri.startswith("http")
cache_path = None
if is_uri:
ext = pathlib.Path(file_or_uri).suffix
# hash the file path to get the cache name
_cache_name = "audio_" + hashlib.md5(file_or_uri.encode("utf-8")).hexdigest() + ext
os.makedirs(os.path.expanduser("~/.cache/fam/"), exist_ok=True)
cache_path = os.path.expanduser(f"~/.cache/fam/{_cache_name}")
if not os.path.exists(cache_path):
command = f"curl -o {cache_path} {file_or_uri}"
subprocess.run(command, shell=True, check=True)
else:
if os.path.exists(file_or_uri):
cache_path = file_or_uri
else:
raise FileNotFoundError(f"File {file_or_uri} not found!")
return cache_path
def get_cached_embedding(local_file_path: str, spkemb_model):
if not os.path.exists(local_file_path):
raise FileNotFoundError(f"File {local_file_path} not found!")
# hash the file path to get the cache name
_cache_name = "embedding_" + hashlib.md5(local_file_path.encode("utf-8")).hexdigest() + ".pt"
os.makedirs(os.path.expanduser("~/.cache/fam/"), exist_ok=True)
cache_path = os.path.expanduser(f"~/.cache/fam/{_cache_name}")
if not os.path.exists(cache_path):
spk_emb = spkemb_model.embed_utterance_from_file(local_file_path, numpy=False).unsqueeze(0) # (b=1, c)
torch.save(spk_emb, cache_path)
else:
spk_emb = torch.load(cache_path)
return spk_emb
def _sample_utterance_batch(
texts: list[str],
spk_cond_paths: list[Optional[str]],
spkemb_model,
first_stage_model,
second_stage_model,
enhancer: Optional[Union[Literal["df"], BaseEnhancer]],
first_stage_ckpt_path: str,
second_stage_ckpt_path: str,
guidance_scale: Optional[Tuple[float, float]],
max_new_tokens: int,
top_k: Optional[int],
top_p: Optional[float],
temperature: Optional[float],
batch_size: int = 128,
) -> List[str]:
speaker_embs = []
refs = spk_cond_paths.copy()
# multithreaded loop to cache all the files
spk_cond_paths = tqdm.contrib.concurrent.thread_map(
get_cached_file, spk_cond_paths, desc="getting cached speaker ref files"
)
for i, (text, spk_cond_path) in tqdm.tqdm(
enumerate(zip(texts, spk_cond_paths)), total=len(texts), desc="calculating speaker embeddings"
):
texts[i] = normalize_text(text)
speaker_embs.append(get_cached_embedding(spk_cond_path, spkemb_model) if spk_cond_path else None)
b_speaker_embs = torch.cat(speaker_embs, dim=0)
start = time.time()
b_tokens = first_stage_model(
texts=texts,
speaker_embs=b_speaker_embs,
batch_size=batch_size,
guidance_scale=guidance_scale,
top_p=top_p,
top_k=top_k,
temperature=temperature,
max_new_tokens=max_new_tokens,
)
# TODO: set batch size for second stage model!
wav_files = second_stage_model(
texts=texts,
encodec_tokens=b_tokens,
speaker_embs=b_speaker_embs,
batch_size=batch_size,
guidance_scale=None,
top_p=None,
top_k=top_k,
temperature=temperature,
max_new_tokens=None,
)
for text, tokens, speaker_embs, ref_name, wav_file in zip(texts, b_tokens, b_speaker_embs, refs, wav_files):
if wav_file is None:
continue
with tempfile.NamedTemporaryFile(suffix=".wav") as enhanced_tmp:
if enhancer is not None:
enhancer = get_enhancer(enhancer) if isinstance(enhancer, str) else enhancer
enhancer(str(wav_file) + ".wav", enhanced_tmp.name)
# copy enhanced_tmp.name back to wav_file
print(f"copying enhanced file from {enhanced_tmp.name} to {str(wav_file) + '.wav'}.")
shutil.copy2(enhanced_tmp.name, str(wav_file) + ".wav")
save_result_metadata(
wav_file,
ref_name,
text,
first_stage_ckpt_path,
second_stage_ckpt_path,
)
print(f"time_to_synth_s: {time.time() - start}")
return [str(w) + ".wav" if not str(w).endswith(".wav") else str(w) for w in wav_files]
def sample_utterance(
text: str,
spk_cond_path: Optional[str],
spkemb_model,
first_stage_model,
second_stage_model,
enhancer: Optional[Union[Literal["df"], BaseEnhancer]],
first_stage_ckpt_path: str,
second_stage_ckpt_path: str,
guidance_scale: Optional[Tuple[float, float]],
max_new_tokens: int,
top_k: Optional[int],
top_p: Optional[float],
temperature: Optional[float],
) -> str:
# NOTE: supports max. 220 characters atm.
# Long form synthesis coming soon...
MAX_CHARS = 220
if len(text) > MAX_CHARS:
print(
f"\n***WARNING: Max {MAX_CHARS} characters supported. Provided: {len(text)}. Truncating and generating speech...Can lead to unpredictable speech at the end.***"
)
return _sample_utterance_batch(
texts=[text],
spk_cond_paths=[spk_cond_path],
spkemb_model=spkemb_model,
first_stage_model=first_stage_model,
second_stage_model=second_stage_model,
enhancer=enhancer,
first_stage_ckpt_path=first_stage_ckpt_path,
second_stage_ckpt_path=second_stage_ckpt_path,
batch_size=1,
guidance_scale=guidance_scale,
max_new_tokens=max_new_tokens,
top_k=top_k,
top_p=top_p,
temperature=temperature,
)[0]
def build_models(config_first_stage, config_second_stage, model_dir, device, use_kv_cache):
smodel = SpeakerEncoder(
weights_fpath=os.path.join(model_dir, "speaker_encoder.pt"), device=device, eval=True, verbose=False
)
data_adapter = FlattenedInterleavedEncodec2Codebook(end_of_audio_token=1024)
llm_first_stage = Model(
config_first_stage,
TrainedBPETokeniser,
EncodecDecoder,
data_adapter_fn=data_adapter.decode,
use_kv_cache=use_kv_cache,
)
data_adapter_second_stage = TiltedEncodec(end_of_audio_token=1024)
llm_second_stage = Model(
config_second_stage, TrainedBPETokeniser, EncodecDecoder, data_adapter_fn=data_adapter_second_stage.decode
)
return smodel, llm_first_stage, llm_second_stage
def get_first_stage_path(model_dir: str):
"""Absolute path to checkpoint for the first stage model."""
return os.path.join(os.path.expanduser(model_dir), "first_stage.pt")
def get_second_stage_path(model_dir: str):
"""Absolute path to checkpoint for the second stage model."""
return os.path.join(os.path.expanduser(model_dir), "second_stage.pt")
@dataclass
class SamplingControllerConfig:
"""
Sample from a trained model.
"""
spk_cond_path: str
"""Path to speaker reference file. Min. 30s of audio required. Supports both local paths & public URIs. Audio formats: wav, flac & mp3"""
huggingface_repo_id: str = "kotoba-tech/kotoba-speech-v0.1"
"""Absolute path to the model directory."""
text: str = (
"This is a demo of text to speech by MetaVoice-1B, an open-source foundational audio model by MetaVoice."
)
"""Text to synthesise."""
num_samples: int = 1
"""Number of samples to generate from each model."""
max_new_tokens: int = 864
"""Maximum number of new tokens to generate from the first stage model."""
temperature: float = 1.0
"""Temperature for sampling applied to both models."""
top_k: Optional[int] = None
"""Top k for sampling applied to both models."""
top_p: Optional[float] = 0.95
"""Top p for sampling applied to first-stage model."""
seed: int = 1337
"""Random seed for sampling."""
device: Literal["cuda", "cpu"] = "cuda"
"""Device to use for sampling."""
dtype: Literal["bfloat16", "float16", "float32", "tfloat32"] = get_default_dtype()
"""Data type to use for sampling."""
compile: bool = False
"""Whether to compile the model using PyTorch 2.0."""
enhancer: Optional[Literal["df"]] = "df"
"""Enhancer to use for post-processing."""
init_from: str = "resume"
"""Either 'resume' (from an out_dir) or a gpt2 variant (e.g. 'gpt2-xl')."""
use_kv_cache: Optional[Literal["vanilla"]] = "vanilla"
"""Type of kv caching to use for inference: 1) [none] no kv caching, 2) [vanilla] use torch attention with hand implemented kv-cache."""
output_dir: str = "samples/"
"""Relative path to output directory"""
guidance_scale: Optional[Tuple[float, float]] = (3.0, 1.0)
"""Guidance scale for sampling: (speaker conditioning guidance_scale, prompt conditioning guidance scale)."""
batch_size: int = 128
"""Batch size to use for sampling. Note that the batch size gets doubled when guidance is used. For H100, and 1B model,
1 w/ guidance and 1 w/o guidance work well (without kv-caching). With kv-caching, 128 (w/o guidance) and
64 (w/ guidance) works well."""
if __name__ == "__main__":
# TODO: add support for batch sampling via CLI. Function has been implemented above.
sampling_config = tyro.cli(SamplingControllerConfig, use_underscores=True)
check_audio_file(sampling_config.spk_cond_path)
model_dir = snapshot_download(repo_id=sampling_config.huggingface_repo_id)
first_stage_ckpt_path = get_first_stage_path(model_dir)
second_stage_ckpt_path = get_second_stage_path(model_dir)
config_first_stage = InferenceConfig(
ckpt_path=first_stage_ckpt_path,
num_samples=sampling_config.num_samples,
seed=sampling_config.seed,
device=sampling_config.device,
dtype=sampling_config.dtype,
compile=sampling_config.compile,
init_from=sampling_config.init_from,
output_dir=sampling_config.output_dir,
)
config_second_stage = InferenceConfig(
ckpt_path=second_stage_ckpt_path,
num_samples=sampling_config.num_samples,
seed=sampling_config.seed,
device=sampling_config.device,
dtype=sampling_config.dtype,
compile=sampling_config.compile,
init_from=sampling_config.init_from,
output_dir=sampling_config.output_dir,
)
sampling_config.max_new_tokens *= (
2 # deal with max_new_tokens for flattened interleaving! (should scale with num_codebooks?)
)
# define models
smodel, llm_first_stage, llm_second_stage = build_models(
config_first_stage,
config_second_stage,
model_dir=model_dir,
device=sampling_config.device,
use_kv_cache=sampling_config.use_kv_cache,
)
sample_utterance(
sampling_config.text,
os.path.expanduser(sampling_config.spk_cond_path),
smodel,
llm_first_stage,
llm_second_stage,
sampling_config.enhancer,
first_stage_ckpt_path,
second_stage_ckpt_path,
sampling_config.guidance_scale,
max_new_tokens=sampling_config.max_new_tokens,
top_k=sampling_config.top_k,
top_p=sampling_config.top_p,
temperature=sampling_config.temperature,
)
|