Spaces:
Running
on
T4
Running
on
T4
File size: 21,965 Bytes
565faca |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 |
from typing import Optional, Tuple
import numpy as np
import torch
import tqdm
from torch.nn import functional as F
from IPython import embed
def top_p_sample(prob_dist: torch.Tensor, top_p: float):
sorted_probs, sorted_indices = torch.sort(prob_dist, descending=True, dim=-1)
cum_sum_probs = torch.cumsum(sorted_probs, dim=-1) # (b, vocab_size)
sorted_indices_to_remove = cum_sum_probs > top_p
# Shift the indices to the right to keep also the first token above the threshold
sorted_indices_to_remove[:, 1:] = sorted_indices_to_remove[:, :-1].clone()
sorted_indices_to_remove[:, 0] = 0
sorted_indices_to_remove = sorted_indices_to_remove.bool()
# replace probs to be removed with 0 in the sorted_probs
sorted_probs[sorted_indices_to_remove] = 0
# reverse the sorting process
reversed_indices = torch.argsort(sorted_indices)
prob_dist = torch.gather(sorted_probs, -1, reversed_indices)
# normalize
prob_dist = prob_dist / prob_dist.sum(dim=-1, keepdim=True)
return prob_dist
class CausalInferenceMixin:
"""
Mixin class for performing inference in a causal language model.
This mixin provides methods for predicting the next token in a sequence, sampling from the model,
and applying token prediction masks.
Attributes:
None
Methods:
_sample_next_token: Predicts the next token in the sequence.
_create_token_pred_mask: Creates a token prediction mask based on sequence lengths.
_apply_token_pred_mask: Applies a token prediction mask to the next token predictions.
_sample_batch: Samples a batch of tokens from the model.
_sort_for_batching: Sorts the input sequences for efficient batching.
_causal_sample: Generates a sequence of tokens using causal sampling.
"""
@torch.no_grad()
def _sample_next_token(
self,
*,
idx: torch.Tensor,
speaker_embs: Optional[torch.Tensor],
temperature: float,
top_k: Optional[int],
top_p: Optional[float],
guidance_scale: Optional[float],
) -> torch.Tensor:
"""
Predict the next token in the sequence.
Args:
idx (torch.Tensor): Initial sequence indices of shape (batch, num_hierarchies, time).
speaker_embs (Optional[torch.Tensor]): Speaker embeddings. Set to `None` if using an unconditional model.
temperature (float): Sampling temperature.
top_k (Optional[int]): Top-k filtering threshold. Set to `None` to disable top-k filtering.
top_p (Optional[float]): Nucleus sampling threshold. Set to `None` to disable it.
guidance_scale (Optional[float]): Scale factor for the guidance loss. Set to `None` to disable guidance.
Returns:
torch.Tensor: Next index in the sequence after sampling. Shape: (batch, num_hierarchies).
"""
if top_k is not None and top_p is not None:
raise ValueError("Only one of top_k and top_p can be set")
# if the sequence context is growing too long we must crop it at block_size
idx_cond = idx if idx.size(-1) <= self.config.block_size else idx[:, :, -self.config.block_size :]
# forward the model to get the logits for the index in the sequence
list_logits, _ = self(
idx_cond, speaker_embs=speaker_embs
) # list with len num_hierarchies of (b,1,vocab_size) tensors
# print(f'{list_logits[0].shape=}, {len(list_logits)=}')
# print(f'{list_logits[0][:,:,:10]}')
if guidance_scale is not None:
assert idx_cond.shape[0] % 2 == 0
assert list_logits[0].shape[0] % 2 == 0
for i, logits in enumerate(list_logits):
logits_cond, logits_uncond = logits.split(logits.shape[0] // 2, dim=0)
list_logits[i] = (guidance_scale) * logits_cond + (1 - guidance_scale) * logits_uncond
assert list_logits[0].shape[0] == idx_cond.shape[0] // 2
# pluck the logits at the final step and scale by desired temperature
list_logits = [
logits[:, -1, :] / temperature for logits in list_logits
] # list with len num_hierarchies of (b,vocab_size) tensors
# optionally crop the logits to only the top k options
if top_k is not None:
for i in range(len(list_logits)):
logits = list_logits[i]
v, _ = torch.topk(
logits, min(top_k, logits.size(-1))
) # returns a descending sorted list of values and indices of top_k values
logits[logits < v[:, [-1]]] = -float("Inf") # set all logits below the smallest top_k value to -Inf
list_logits[i] = logits
# apply softmax to convert logits to (normalized) probabilities
# embed()
probs = [
F.softmax(logits, dim=-1) for logits in list_logits
] # list of len num_hierarchies of (b,vocab_size) tensors
# print(f'{probs[0].shape=}')
# print(f'{probs[0][:,:,:10]}')
if top_p is not None:
for i in range(len(probs)):
probs[i] = top_p_sample(probs[i], top_p)
# sample from the distribution
idx_next = [
torch.multinomial(prob, num_samples=1) for prob in probs
] # list of len num_hierarchies of (b,1) tensors
idx_next = torch.cat(idx_next, dim=-1) # (b, num_hierarchies) tensor
return idx_next # (b, num_hierarchies) tensor
@torch.no_grad()
def _create_token_pred_mask(self, idx: torch.Tensor, seq_lens: list[int]) -> torch.Tensor:
"""
Creates a token prediction mask based on sequence lengths.
Args:
idx (torch.Tensor): Initial sequence indices of shape (batch, num_hierarchies, time).
seq_lens (list[int]): List of sequence lengths for each sequence in idx.
Returns:
torch.Tensor: Token prediction mask of shape (batch, time).
"""
token_pred_mask = torch.zeros((idx.shape[0], idx.shape[-1]), dtype=torch.bool, device=idx.device)
for i in range(len(seq_lens)):
token_pred_mask[i, : seq_lens[i]] = True
assert (token_pred_mask[:, : min(seq_lens)] == 1).all()
return token_pred_mask
@torch.no_grad()
def _apply_token_pred_mask(
self, *, idx_next: torch.Tensor, orig_input_at_t: torch.Tensor, token_pred_mask_at_t: torch.Tensor
) -> torch.Tensor:
"""
Applies a token prediction mask to the next token predictions.
Args:
idx_next (torch.Tensor): Next token predictions of shape (batch, num_hierarchies).
orig_input_at_t (torch.Tensor): Original input at time step t of shape (batch, num_hierarchies).
token_pred_mask_at_t (torch.Tensor): Token prediction mask at time step t of shape (batch, 1).
Returns:
torch.Tensor: Updated next token predictions after applying the token prediction mask.
"""
idx_next = idx_next * (~token_pred_mask_at_t) + orig_input_at_t * token_pred_mask_at_t
return idx_next
@torch.no_grad()
def _sample_batch(
self,
*,
idx: torch.Tensor,
max_new_tokens: int,
seq_lens: list[int],
temperature: float,
top_k: Optional[int],
top_p: Optional[float],
speaker_embs: Optional[torch.Tensor],
guidance_scale: Optional[float],
):
"""
Samples a batch of tokens from the model.
Args:
idx (torch.Tensor): Initial sequence indices of shape (batch, num_hierarchies, time).
max_new_tokens (int): Maximum number of NEW tokens to generate (in addition to largest sequence in idx).
seq_lens (list[int]): List of sequence lengths for each sequence in idx.
temperature (float): Sampling temperature.
top_k (Optional[int]): Top-k filtering threshold. Set to `None` to disable top-k filtering.
top_p (Optional[float]): Nucleus sampling threshold. Set to `None` to disable it.
speaker_embs (Optional[torch.Tensor]): Speaker embeddings. Set to `None` if using an unconditional model.
guidance_scale (Optional[float]): Scale factor for the guidance loss. Set to `None` to disable guidance.
Returns:
torch.Tensor: Generated sequence indices of shape (batch, num_hierarchies, time).
"""
assert max(seq_lens) <= idx.shape[-1]
token_pred_mask = self._create_token_pred_mask(idx, seq_lens)
input = torch.clone(idx)
min_seq_lens = min(seq_lens)
idx = idx[:, :, :min_seq_lens]
if guidance_scale is not None:
if speaker_embs is None:
raise Exception("Guidance is only supported for conditional models")
# create speaker embeddings equivalent to the batch size, filling with None
# for second half to do unconditional generation.
speaker_embs = list(speaker_embs) + [None] * (speaker_embs.shape[0])
for timestep in tqdm.tqdm(range(min_seq_lens, min_seq_lens + max_new_tokens), desc="tokens: "):
if (self.kv_cache_enabled is True) and (timestep > min_seq_lens):
idx_input = idx[:, :, -1:]
else:
idx_input = idx
if guidance_scale is not None:
# TODO: fix: will cause a problem with kv-caching as it's not expecting larger batch-size.
if timestep == min_seq_lens:
print("[hack!!!!] Guidance is on, so we're doubling batch size!")
# replicate idx in the batch dimension
idx_input = (
idx_input.unsqueeze(0).repeat(2, 1, 1, 1).reshape(-1, idx_input.shape[1], idx_input.shape[2])
)
# sanity checks
assert idx_input.shape[0] % 2 == 0
idx_next = self._sample_next_token(
idx=idx_input,
speaker_embs=speaker_embs,
temperature=temperature,
top_k=top_k,
top_p=top_p,
guidance_scale=guidance_scale,
) # (b, num_hierarchies)
assert idx_next.shape[0] == idx.shape[0]
if timestep < token_pred_mask.shape[-1]:
idx_next = self._apply_token_pred_mask(
idx_next=idx_next,
orig_input_at_t=input[:, :, timestep],
token_pred_mask_at_t=token_pred_mask[:, [timestep]],
)
idx_next = idx_next.unsqueeze(-1) # (b, num_hierarchies, T=1) tensor
# append sampled index to the running sequence and continue
idx = torch.cat((idx, idx_next), dim=2)
return idx
@torch.no_grad()
def _sort_for_batching(
self,
*,
idx: torch.Tensor,
seq_lens: list[int],
speaker_embs: Optional[torch.Tensor],
batch_size: int,
max_new_tokens: int,
) -> Tuple[list[int], list[int], torch.Tensor, list[int], Optional[torch.Tensor], int]:
"""
Sorts the input sequences for efficient batching.
Args:
idx (torch.Tensor): Initial sequence indices of shape (batch, num_hierarchies, time).
seq_lens (list[int]): List of sequence lengths for each sequence in idx.
speaker_embs (Optional[torch.Tensor]): Speaker embeddings. Set to `None` if using an unconditional model.
batch_size (int): Batch size for sampling. idx is split into batches of this size for sampling.
max_new_tokens (int): Maximum number of NEW tokens to generate (in addition to largest sequence in idx).
Returns:
Tuple[list[int], list[int], torch.Tensor, list[int], Optional[torch.Tensor], int]:
- sorted_indices (list[int]): List of indices of the input sequences that transform it into sorted order.
- invert_sorted_indices (list[int]): List of indices to invert the sorted sequences back to the original order.
- idx (torch.Tensor): Input sequence indices in sorted order.
- seq_lens (list[int]): Sequence lengths in sorted order.
- speaker_embs (Optional[torch.Tensor]): speaker embeddings in sorted order.
- max_token_len (int): Effective maximum number of tokens to generate.
"""
assert len(seq_lens) == idx.shape[0]
assert max(seq_lens) <= idx.shape[-1]
sorted_indices = np.argsort(seq_lens)
inverted_sorted_indices = np.zeros(len(seq_lens), dtype=np.int32)
inverted_sorted_indices[sorted_indices] = np.arange(len(seq_lens), dtype=np.int32)
idx = idx[sorted_indices]
seq_lens = [seq_lens[i] for i in sorted_indices]
speaker_embs = speaker_embs[sorted_indices] if speaker_embs is not None else None
max_token_len = 0
# figure out effective max_tokens to generate
for start_index in range(0, len(seq_lens), batch_size):
end_index = min(start_index + batch_size, len(seq_lens))
batch_seq_lens = seq_lens[start_index:end_index]
# random heuristic...
# # TODO: fix!
max_token_len = max(max_token_len, min(batch_seq_lens) + max_new_tokens)
return sorted_indices, inverted_sorted_indices, idx, seq_lens, speaker_embs, max_token_len
@torch.no_grad()
def _causal_sample(
self,
*,
idx: torch.Tensor,
max_new_tokens: int,
seq_lens: list[int],
temperature: float,
top_k: Optional[int],
top_p: Optional[float],
speaker_embs: Optional[torch.Tensor],
batch_size: int,
guidance_scale: Optional[float] = None,
) -> torch.Tensor:
"""
Generates a sequence of tokens using causal sampling.
Args:
idx (torch.Tensor): Initial sequence indices of shape (batch, num_hierarchies, time).
max_new_tokens (int): Maximum number of NEW tokens to generate (in addition to largest sequence in idx).
seq_lens (list[int]): List of sequence lengths for each sequence in idx.
temperature (float): Sampling temperature.
top_k (Optional[int]): Top-k filtering threshold. Set to `None` to disable top-k filtering.
top_p (Optional[float]): Nucleus sampling threshold. Set to `None` to disable it.
speaker_embs (Optional[torch.Tensor]): Speaker embeddings. Set to `None` if using an unconditional model.
batch_size (int): Batch size for sampling. idx is split into batches of this size for sampling.
guidance_scale (Optional[float]): Scale factor for the guidance loss. Set to `None` to disable guidance.
Returns:
torch.Tensor: Generated sequence indices of shape (batch, num_hierarchies, time).
"""
(
_,
invert_sorted_indices,
idx,
seq_lens,
speaker_embs,
max_token_len,
) = self._sort_for_batching(
idx=idx, seq_lens=seq_lens, speaker_embs=speaker_embs, batch_size=batch_size, max_new_tokens=max_new_tokens
)
return_idx = torch.zeros((len(seq_lens), idx.size(1), max_token_len), dtype=torch.long, device=idx.device)
for start_index in tqdm.tqdm(range(0, len(seq_lens), batch_size), desc="batch: "):
end_index = min(start_index + batch_size, len(seq_lens))
kv_batch_size = end_index - start_index
if guidance_scale is not None:
kv_batch_size = 2 * kv_batch_size
if self.kv_cache_enabled:
print("!!!! USING KV-CACHING ASSUMED TORCH.BFLOAT16")
self.empty_kv_cache(
batch_size=kv_batch_size,
kv_cache_maxlen=self.config.block_size,
dtype=torch.bfloat16,
)
batch_seq_lens = seq_lens[start_index:end_index]
batch_max_new_tokens = max_token_len - min(batch_seq_lens)
batch_idx = idx[start_index:end_index]
batch_speaker_embs = speaker_embs[start_index:end_index] if speaker_embs is not None else None
batch_idx = self._sample_batch(
idx=batch_idx,
max_new_tokens=batch_max_new_tokens,
seq_lens=batch_seq_lens,
temperature=temperature,
top_k=top_k,
top_p=top_p,
speaker_embs=batch_speaker_embs,
guidance_scale=guidance_scale,
)
return_idx[start_index:end_index] = batch_idx
return return_idx[invert_sorted_indices]
def empty_kv_cache(self, *, batch_size: int, kv_cache_maxlen: int, dtype: torch.dtype):
"""
Empties key-value (KV) cache for causal attention.
Args:
batch_size (int): The batch size.
kv_cache_maxlen (int): The maximum length of the KV cache.
dtype (torch.dtype): The data type of the KV cache.
Raises:
Exception: If KV cache is enabled for non-causal attention.
"""
if self.kv_cache_enabled is False:
raise Exception("KV cache is not enabled")
if self.config.causal is False:
raise Exception("KV cache is not supported for non-causal attention")
self.kv_pos = 0
for block in self.transformer.h:
block.attn.empty_kv_cache(batch_size=batch_size, kv_cache_maxlen=kv_cache_maxlen, dtype=dtype)
def enable_kv_cache(self):
"""
Enables key-value (KV) cache for causal attention.
Raises:
Exception: If KV cache is enabled for non-causal attention.
"""
if self.config.causal is False:
raise Exception("KV cache is not supported for non-causal attention")
self.kv_cache_enabled = True
for block in self.transformer.h:
block.attn.kv_cache_enabled = True
def disable_kv_cache(self):
"""
Disables the key-value cache for the transformer and all its blocks.
"""
self.kv_cache_enabled = False
for block in self.transformer.h:
block.attn.kv_cache_enabled = False
block.attn.kv_cache = None
block.attn.kv_cache_first_empty_index = 0
@torch.no_grad()
def _slow_causal_sampling_loop(
self,
idx: torch.Tensor,
max_new_tokens: int,
temperature: float = 1.0,
top_k: Optional[int] = None,
top_p: Optional[float] = None,
speaker_embs: Optional[torch.Tensor] = None,
guidance_scale: Optional[float] = None,
):
"""
Old non-batched version of causal sampling. Kept for testing / reference.
Take a conditioning sequence of indices idx (LongTensor of shape (b,n_head,t)) and complete
the sequence max_new_tokens times, feeding the predictions back into the model each time.
Most likely you'll want to make sure to be in model.eval() mode of operation for this.
"""
assert idx.dim() == 3, "idx must be a batch of sequences of hierarchical tokens"
assert idx.size(0) == 1, "can only do one sequence at a time for now"
assert top_p is None, "nucleus sampling not supported yet with _slow_causal_sampling_loop"
if self.config.causal is not True:
raise Exception("Causal sampling is only supported for causal models")
if self.kv_cache_enabled:
print("!!!! USING KV-CACHING ASSUMED TORCH.BFLOAT16")
self.empty_kv_cache(
batch_size=1,
kv_cache_maxlen=self.config.block_size,
dtype=torch.bfloat16,
)
for i in range(max_new_tokens):
# if the sequence context is growing too long we must crop it at block_size
idx_cond = idx if idx.size(-1) <= self.config.block_size else idx[:, -self.config.block_size :]
if self.kv_cache_enabled:
if i > 0:
idx_cond = idx_cond[:, :, -1:]
# forward the model to get the logits for the index in the sequence
list_logits, _ = self(idx_cond, speaker_embs=speaker_embs)
if guidance_scale is not None:
# we've already checked that kv-caching is not switched on
# so this should be ok.
list_logits_uncond, _ = self(idx_cond, speaker_embs=None)
list_logits = [
(guidance_scale) * logits + (1 - guidance_scale) * logits_uncond
for logits, logits_uncond in zip(list_logits, list_logits_uncond)
]
# pluck the logits at the final step and scale by desired temperature
list_logits = [logits[:, -1, :] / temperature for logits in list_logits]
# optionally crop the logits to only the top k options
if top_k is not None:
for i in range(len(list_logits)):
logits = list_logits[i]
v, _ = torch.topk(logits, min(top_k, logits.size(-1)))
logits[logits < v[:, [-1]]] = -float("Inf")
list_logits[i] = logits
# apply softmax to convert logits to (normalized) probabilities
probs = [F.softmax(logits, dim=-1) for logits in list_logits]
# sample from the distribution
idx_next = torch.tensor(
[torch.multinomial(prob, num_samples=1) for prob in probs], device=idx.device
) # (c, 1)
# append sampled index to the running sequence and continue
idx = torch.cat((idx, idx_next.unsqueeze(0).unsqueeze(-1)), dim=2)
return idx
|