File size: 21,965 Bytes
565faca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
from typing import Optional, Tuple

import numpy as np
import torch
import tqdm
from torch.nn import functional as F
from IPython import embed

def top_p_sample(prob_dist: torch.Tensor, top_p: float):
    sorted_probs, sorted_indices = torch.sort(prob_dist, descending=True, dim=-1)
    cum_sum_probs = torch.cumsum(sorted_probs, dim=-1)  # (b, vocab_size)

    sorted_indices_to_remove = cum_sum_probs > top_p

    # Shift the indices to the right to keep also the first token above the threshold
    sorted_indices_to_remove[:, 1:] = sorted_indices_to_remove[:, :-1].clone()
    sorted_indices_to_remove[:, 0] = 0
    sorted_indices_to_remove = sorted_indices_to_remove.bool()

    # replace probs to be removed with 0 in the sorted_probs
    sorted_probs[sorted_indices_to_remove] = 0

    # reverse the sorting process
    reversed_indices = torch.argsort(sorted_indices)
    prob_dist = torch.gather(sorted_probs, -1, reversed_indices)

    # normalize
    prob_dist = prob_dist / prob_dist.sum(dim=-1, keepdim=True)

    return prob_dist


class CausalInferenceMixin:
    """
    Mixin class for performing inference in a causal language model.

    This mixin provides methods for predicting the next token in a sequence, sampling from the model,
    and applying token prediction masks.

    Attributes:
        None

    Methods:
        _sample_next_token: Predicts the next token in the sequence.
        _create_token_pred_mask: Creates a token prediction mask based on sequence lengths.
        _apply_token_pred_mask: Applies a token prediction mask to the next token predictions.
        _sample_batch: Samples a batch of tokens from the model.
        _sort_for_batching: Sorts the input sequences for efficient batching.
        _causal_sample: Generates a sequence of tokens using causal sampling.

    """

    @torch.no_grad()
    def _sample_next_token(
        self,
        *,
        idx: torch.Tensor,
        speaker_embs: Optional[torch.Tensor],
        temperature: float,
        top_k: Optional[int],
        top_p: Optional[float],
        guidance_scale: Optional[float],
    ) -> torch.Tensor:
        """
        Predict the next token in the sequence.

        Args:
            idx (torch.Tensor): Initial sequence indices of shape (batch, num_hierarchies, time).
            speaker_embs (Optional[torch.Tensor]): Speaker embeddings. Set to `None` if using an unconditional model.
            temperature (float): Sampling temperature.
            top_k (Optional[int]): Top-k filtering threshold. Set to `None` to disable top-k filtering.
            top_p (Optional[float]): Nucleus sampling threshold. Set to `None` to disable it.
            guidance_scale (Optional[float]): Scale factor for the guidance loss. Set to `None` to disable guidance.

        Returns:
            torch.Tensor: Next index in the sequence after sampling. Shape: (batch, num_hierarchies).
        """
        if top_k is not None and top_p is not None:
            raise ValueError("Only one of top_k and top_p can be set")

        # if the sequence context is growing too long we must crop it at block_size
        idx_cond = idx if idx.size(-1) <= self.config.block_size else idx[:, :, -self.config.block_size :]

        # forward the model to get the logits for the index in the sequence
        list_logits, _ = self(
            idx_cond, speaker_embs=speaker_embs
        )  # list with len num_hierarchies of (b,1,vocab_size) tensors
        # print(f'{list_logits[0].shape=}, {len(list_logits)=}')
        # print(f'{list_logits[0][:,:,:10]}')
        
        if guidance_scale is not None:
            assert idx_cond.shape[0] % 2 == 0
            assert list_logits[0].shape[0] % 2 == 0

            for i, logits in enumerate(list_logits):
                logits_cond, logits_uncond = logits.split(logits.shape[0] // 2, dim=0)
                list_logits[i] = (guidance_scale) * logits_cond + (1 - guidance_scale) * logits_uncond

            assert list_logits[0].shape[0] == idx_cond.shape[0] // 2

        # pluck the logits at the final step and scale by desired temperature
        list_logits = [
            logits[:, -1, :] / temperature for logits in list_logits
        ]  # list with len num_hierarchies of (b,vocab_size) tensors

        # optionally crop the logits to only the top k options
        if top_k is not None:
            for i in range(len(list_logits)):
                logits = list_logits[i]
                v, _ = torch.topk(
                    logits, min(top_k, logits.size(-1))
                )  # returns a descending sorted list of values and indices of top_k values
                logits[logits < v[:, [-1]]] = -float("Inf")  # set all logits below the smallest top_k value to -Inf
                list_logits[i] = logits

        # apply softmax to convert logits to (normalized) probabilities
        # embed()
        probs = [
            F.softmax(logits, dim=-1) for logits in list_logits
        ]  # list of len num_hierarchies of (b,vocab_size) tensors
        # print(f'{probs[0].shape=}')
        # print(f'{probs[0][:,:,:10]}')
        if top_p is not None:
            for i in range(len(probs)):
                probs[i] = top_p_sample(probs[i], top_p)

        # sample from the distribution
        idx_next = [
            torch.multinomial(prob, num_samples=1) for prob in probs
        ]  # list of len num_hierarchies of (b,1) tensors
        idx_next = torch.cat(idx_next, dim=-1)  # (b, num_hierarchies) tensor

        return idx_next  # (b, num_hierarchies) tensor

    @torch.no_grad()
    def _create_token_pred_mask(self, idx: torch.Tensor, seq_lens: list[int]) -> torch.Tensor:
        """
        Creates a token prediction mask based on sequence lengths.

        Args:
            idx (torch.Tensor): Initial sequence indices of shape (batch, num_hierarchies, time).
            seq_lens (list[int]): List of sequence lengths for each sequence in idx.

        Returns:
            torch.Tensor: Token prediction mask of shape (batch, time).
        """
        token_pred_mask = torch.zeros((idx.shape[0], idx.shape[-1]), dtype=torch.bool, device=idx.device)
        for i in range(len(seq_lens)):
            token_pred_mask[i, : seq_lens[i]] = True

        assert (token_pred_mask[:, : min(seq_lens)] == 1).all()

        return token_pred_mask

    @torch.no_grad()
    def _apply_token_pred_mask(
        self, *, idx_next: torch.Tensor, orig_input_at_t: torch.Tensor, token_pred_mask_at_t: torch.Tensor
    ) -> torch.Tensor:
        """
        Applies a token prediction mask to the next token predictions.

        Args:
            idx_next (torch.Tensor): Next token predictions of shape (batch, num_hierarchies).
            orig_input_at_t (torch.Tensor): Original input at time step t of shape (batch, num_hierarchies).
            token_pred_mask_at_t (torch.Tensor): Token prediction mask at time step t of shape (batch, 1).

        Returns:
            torch.Tensor: Updated next token predictions after applying the token prediction mask.
        """
        idx_next = idx_next * (~token_pred_mask_at_t) + orig_input_at_t * token_pred_mask_at_t

        return idx_next

    @torch.no_grad()
    def _sample_batch(
        self,
        *,
        idx: torch.Tensor,
        max_new_tokens: int,
        seq_lens: list[int],
        temperature: float,
        top_k: Optional[int],
        top_p: Optional[float],
        speaker_embs: Optional[torch.Tensor],
        guidance_scale: Optional[float],
    ):
        """
        Samples a batch of tokens from the model.

        Args:
            idx (torch.Tensor): Initial sequence indices of shape (batch, num_hierarchies, time).
            max_new_tokens (int): Maximum number of NEW tokens to generate (in addition to largest sequence in idx).
            seq_lens (list[int]): List of sequence lengths for each sequence in idx.
            temperature (float): Sampling temperature.
            top_k (Optional[int]): Top-k filtering threshold. Set to `None` to disable top-k filtering.
            top_p (Optional[float]): Nucleus sampling threshold. Set to `None` to disable it.
            speaker_embs (Optional[torch.Tensor]): Speaker embeddings. Set to `None` if using an unconditional model.
            guidance_scale (Optional[float]): Scale factor for the guidance loss. Set to `None` to disable guidance.

        Returns:
            torch.Tensor: Generated sequence indices of shape (batch, num_hierarchies, time).
        """
        assert max(seq_lens) <= idx.shape[-1]
        token_pred_mask = self._create_token_pred_mask(idx, seq_lens)
        input = torch.clone(idx)

        min_seq_lens = min(seq_lens)
        idx = idx[:, :, :min_seq_lens]

        if guidance_scale is not None:
            if speaker_embs is None:
                raise Exception("Guidance is only supported for conditional models")

            # create speaker embeddings equivalent to the batch size, filling with None
            # for second half to do unconditional generation.
            speaker_embs = list(speaker_embs) + [None] * (speaker_embs.shape[0])

        for timestep in tqdm.tqdm(range(min_seq_lens, min_seq_lens + max_new_tokens), desc="tokens: "):
            if (self.kv_cache_enabled is True) and (timestep > min_seq_lens):
                idx_input = idx[:, :, -1:]
            else:
                idx_input = idx

            if guidance_scale is not None:
                # TODO: fix: will cause a problem with kv-caching as it's not expecting larger batch-size.
                if timestep == min_seq_lens:
                    print("[hack!!!!] Guidance is on, so we're doubling batch size!")

                # replicate idx in the batch dimension
                idx_input = (
                    idx_input.unsqueeze(0).repeat(2, 1, 1, 1).reshape(-1, idx_input.shape[1], idx_input.shape[2])
                )

                # sanity checks
                assert idx_input.shape[0] % 2 == 0

            idx_next = self._sample_next_token(
                idx=idx_input,
                speaker_embs=speaker_embs,
                temperature=temperature,
                top_k=top_k,
                top_p=top_p,
                guidance_scale=guidance_scale,
            )  # (b, num_hierarchies)

            assert idx_next.shape[0] == idx.shape[0]

            if timestep < token_pred_mask.shape[-1]:
                idx_next = self._apply_token_pred_mask(
                    idx_next=idx_next,
                    orig_input_at_t=input[:, :, timestep],
                    token_pred_mask_at_t=token_pred_mask[:, [timestep]],
                )

            idx_next = idx_next.unsqueeze(-1)  # (b, num_hierarchies, T=1) tensor
            # append sampled index to the running sequence and continue
            idx = torch.cat((idx, idx_next), dim=2)

        return idx

    @torch.no_grad()
    def _sort_for_batching(
        self,
        *,
        idx: torch.Tensor,
        seq_lens: list[int],
        speaker_embs: Optional[torch.Tensor],
        batch_size: int,
        max_new_tokens: int,
    ) -> Tuple[list[int], list[int], torch.Tensor, list[int], Optional[torch.Tensor], int]:
        """
        Sorts the input sequences for efficient batching.

        Args:
            idx (torch.Tensor): Initial sequence indices of shape (batch, num_hierarchies, time).
            seq_lens (list[int]): List of sequence lengths for each sequence in idx.
            speaker_embs (Optional[torch.Tensor]): Speaker embeddings. Set to `None` if using an unconditional model.
            batch_size (int): Batch size for sampling. idx is split into batches of this size for sampling.
            max_new_tokens (int): Maximum number of NEW tokens to generate (in addition to largest sequence in idx).

        Returns:
            Tuple[list[int], list[int], torch.Tensor, list[int], Optional[torch.Tensor], int]:
                - sorted_indices (list[int]): List of indices of the input sequences that transform it into sorted order.
                - invert_sorted_indices (list[int]): List of indices to invert the sorted sequences back to the original order.
                - idx (torch.Tensor): Input sequence indices in sorted order.
                - seq_lens (list[int]): Sequence lengths in sorted order.
                - speaker_embs (Optional[torch.Tensor]): speaker embeddings in sorted order.
                - max_token_len (int): Effective maximum number of tokens to generate.
        """
        assert len(seq_lens) == idx.shape[0]
        assert max(seq_lens) <= idx.shape[-1]

        sorted_indices = np.argsort(seq_lens)
        inverted_sorted_indices = np.zeros(len(seq_lens), dtype=np.int32)
        inverted_sorted_indices[sorted_indices] = np.arange(len(seq_lens), dtype=np.int32)

        idx = idx[sorted_indices]
        seq_lens = [seq_lens[i] for i in sorted_indices]
        speaker_embs = speaker_embs[sorted_indices] if speaker_embs is not None else None
        max_token_len = 0

        # figure out effective max_tokens to generate
        for start_index in range(0, len(seq_lens), batch_size):
            end_index = min(start_index + batch_size, len(seq_lens))
            batch_seq_lens = seq_lens[start_index:end_index]
            # random heuristic...
            # # TODO: fix!
            max_token_len = max(max_token_len, min(batch_seq_lens) + max_new_tokens)

        return sorted_indices, inverted_sorted_indices, idx, seq_lens, speaker_embs, max_token_len

    @torch.no_grad()
    def _causal_sample(
        self,
        *,
        idx: torch.Tensor,
        max_new_tokens: int,
        seq_lens: list[int],
        temperature: float,
        top_k: Optional[int],
        top_p: Optional[float],
        speaker_embs: Optional[torch.Tensor],
        batch_size: int,
        guidance_scale: Optional[float] = None,
    ) -> torch.Tensor:
        """
        Generates a sequence of tokens using causal sampling.

        Args:
            idx (torch.Tensor): Initial sequence indices of shape (batch, num_hierarchies, time).
            max_new_tokens (int): Maximum number of NEW tokens to generate (in addition to largest sequence in idx).
            seq_lens (list[int]): List of sequence lengths for each sequence in idx.
            temperature (float): Sampling temperature.
            top_k (Optional[int]): Top-k filtering threshold. Set to `None` to disable top-k filtering.
            top_p (Optional[float]): Nucleus sampling threshold. Set to `None` to disable it.
            speaker_embs (Optional[torch.Tensor]): Speaker embeddings. Set to `None` if using an unconditional model.
            batch_size (int): Batch size for sampling. idx is split into batches of this size for sampling.
            guidance_scale (Optional[float]): Scale factor for the guidance loss. Set to `None` to disable guidance.

        Returns:
            torch.Tensor: Generated sequence indices of shape (batch, num_hierarchies, time).
        """
        (
            _,
            invert_sorted_indices,
            idx,
            seq_lens,
            speaker_embs,
            max_token_len,
        ) = self._sort_for_batching(
            idx=idx, seq_lens=seq_lens, speaker_embs=speaker_embs, batch_size=batch_size, max_new_tokens=max_new_tokens
        )

        return_idx = torch.zeros((len(seq_lens), idx.size(1), max_token_len), dtype=torch.long, device=idx.device)

        for start_index in tqdm.tqdm(range(0, len(seq_lens), batch_size), desc="batch: "):
            end_index = min(start_index + batch_size, len(seq_lens))

            kv_batch_size = end_index - start_index
            if guidance_scale is not None:
                kv_batch_size = 2 * kv_batch_size

            if self.kv_cache_enabled:
                print("!!!! USING KV-CACHING ASSUMED TORCH.BFLOAT16")
                self.empty_kv_cache(
                    batch_size=kv_batch_size,
                    kv_cache_maxlen=self.config.block_size,
                    dtype=torch.bfloat16,
                )

            batch_seq_lens = seq_lens[start_index:end_index]
            batch_max_new_tokens = max_token_len - min(batch_seq_lens)

            batch_idx = idx[start_index:end_index]
            batch_speaker_embs = speaker_embs[start_index:end_index] if speaker_embs is not None else None

            batch_idx = self._sample_batch(
                idx=batch_idx,
                max_new_tokens=batch_max_new_tokens,
                seq_lens=batch_seq_lens,
                temperature=temperature,
                top_k=top_k,
                top_p=top_p,
                speaker_embs=batch_speaker_embs,
                guidance_scale=guidance_scale,
            )
            return_idx[start_index:end_index] = batch_idx

        return return_idx[invert_sorted_indices]

    def empty_kv_cache(self, *, batch_size: int, kv_cache_maxlen: int, dtype: torch.dtype):
        """
        Empties key-value (KV) cache for causal attention.

        Args:
            batch_size (int): The batch size.
            kv_cache_maxlen (int): The maximum length of the KV cache.
            dtype (torch.dtype): The data type of the KV cache.

        Raises:
            Exception: If KV cache is enabled for non-causal attention.

        """
        if self.kv_cache_enabled is False:
            raise Exception("KV cache is not enabled")
        if self.config.causal is False:
            raise Exception("KV cache is not supported for non-causal attention")

        self.kv_pos = 0
        for block in self.transformer.h:
            block.attn.empty_kv_cache(batch_size=batch_size, kv_cache_maxlen=kv_cache_maxlen, dtype=dtype)

    def enable_kv_cache(self):
        """
        Enables key-value (KV) cache for causal attention.

        Raises:
            Exception: If KV cache is enabled for non-causal attention.

        """
        if self.config.causal is False:
            raise Exception("KV cache is not supported for non-causal attention")

        self.kv_cache_enabled = True
        for block in self.transformer.h:
            block.attn.kv_cache_enabled = True

    def disable_kv_cache(self):
        """
        Disables the key-value cache for the transformer and all its blocks.
        """
        self.kv_cache_enabled = False
        for block in self.transformer.h:
            block.attn.kv_cache_enabled = False
            block.attn.kv_cache = None
            block.attn.kv_cache_first_empty_index = 0

    @torch.no_grad()
    def _slow_causal_sampling_loop(
        self,
        idx: torch.Tensor,
        max_new_tokens: int,
        temperature: float = 1.0,
        top_k: Optional[int] = None,
        top_p: Optional[float] = None,
        speaker_embs: Optional[torch.Tensor] = None,
        guidance_scale: Optional[float] = None,
    ):
        """
        Old non-batched version of causal sampling. Kept for testing / reference.

        Take a conditioning sequence of indices idx (LongTensor of shape (b,n_head,t)) and complete
        the sequence max_new_tokens times, feeding the predictions back into the model each time.
        Most likely you'll want to make sure to be in model.eval() mode of operation for this.
        """
        assert idx.dim() == 3, "idx must be a batch of sequences of hierarchical tokens"
        assert idx.size(0) == 1, "can only do one sequence at a time for now"
        assert top_p is None, "nucleus sampling not supported yet with _slow_causal_sampling_loop"

        if self.config.causal is not True:
            raise Exception("Causal sampling is only supported for causal models")

        if self.kv_cache_enabled:
            print("!!!! USING KV-CACHING ASSUMED TORCH.BFLOAT16")
            self.empty_kv_cache(
                batch_size=1,
                kv_cache_maxlen=self.config.block_size,
                dtype=torch.bfloat16,
            )

        for i in range(max_new_tokens):
            # if the sequence context is growing too long we must crop it at block_size
            idx_cond = idx if idx.size(-1) <= self.config.block_size else idx[:, -self.config.block_size :]

            if self.kv_cache_enabled:
                if i > 0:
                    idx_cond = idx_cond[:, :, -1:]

            # forward the model to get the logits for the index in the sequence
            list_logits, _ = self(idx_cond, speaker_embs=speaker_embs)

            if guidance_scale is not None:
                # we've already checked that kv-caching is not switched on
                # so this should be ok.
                list_logits_uncond, _ = self(idx_cond, speaker_embs=None)
                list_logits = [
                    (guidance_scale) * logits + (1 - guidance_scale) * logits_uncond
                    for logits, logits_uncond in zip(list_logits, list_logits_uncond)
                ]

            # pluck the logits at the final step and scale by desired temperature
            list_logits = [logits[:, -1, :] / temperature for logits in list_logits]

            # optionally crop the logits to only the top k options
            if top_k is not None:
                for i in range(len(list_logits)):
                    logits = list_logits[i]
                    v, _ = torch.topk(logits, min(top_k, logits.size(-1)))
                    logits[logits < v[:, [-1]]] = -float("Inf")
                    list_logits[i] = logits

            # apply softmax to convert logits to (normalized) probabilities
            probs = [F.softmax(logits, dim=-1) for logits in list_logits]
            # sample from the distribution
            idx_next = torch.tensor(
                [torch.multinomial(prob, num_samples=1) for prob in probs], device=idx.device
            )  # (c, 1)
            # append sampled index to the running sequence and continue
            idx = torch.cat((idx, idx_next.unsqueeze(0).unsqueeze(-1)), dim=2)

        return idx