Spaces:
Running
on
T4
Running
on
T4
import os | |
import re | |
import subprocess | |
import tempfile | |
import librosa | |
import torch | |
def normalize_text(text: str) -> str: | |
unicode_conversion = { | |
8175: "'", | |
8189: "'", | |
8190: "'", | |
8208: "-", | |
8209: "-", | |
8210: "-", | |
8211: "-", | |
8212: "-", | |
8213: "-", | |
8214: "||", | |
8216: "'", | |
8217: "'", | |
8218: ",", | |
8219: "`", | |
8220: '"', | |
8221: '"', | |
8222: ",,", | |
8223: '"', | |
8228: ".", | |
8229: "..", | |
8230: "...", | |
8242: "'", | |
8243: '"', | |
8245: "'", | |
8246: '"', | |
180: "'", | |
2122: "TM", # Trademark | |
} | |
text = text.translate(unicode_conversion) | |
non_bpe_chars = set([c for c in list(text) if ord(c) >= 256]) | |
#if len(non_bpe_chars) > 0: | |
# non_bpe_points = [(c, ord(c)) for c in non_bpe_chars] | |
# raise ValueError(f"Non-BPE single token characters found: {non_bpe_points}") | |
text = text.replace("\t", " ") | |
text = text.replace("\n", " ") | |
text = text.replace("*", " ") | |
text = text.strip() | |
text = re.sub("\s\s+", " ", text) # remove multiple spaces | |
return text | |
def check_audio_file(path_or_uri, threshold_s=10): # default 30 | |
if "http" in path_or_uri: | |
temp_fd, filepath = tempfile.mkstemp() | |
os.close(temp_fd) # Close the file descriptor, curl will create a new connection | |
curl_command = ["curl", "-L", path_or_uri, "-o", filepath] | |
subprocess.run(curl_command, check=True) | |
else: | |
filepath = path_or_uri | |
audio, sr = librosa.load(filepath) | |
duration_s = librosa.get_duration(y=audio, sr=sr) | |
if duration_s < threshold_s: | |
raise Exception( | |
f"The audio file is too short. Please provide an audio file that is at least {threshold_s} seconds long to proceed." | |
) | |
# Clean up the temporary file if it was created | |
if "http" in path_or_uri: | |
os.remove(filepath) | |
def get_default_dtype() -> str: | |
"""Compute default 'dtype' based on GPU architecture""" | |
if torch.cuda.is_available(): | |
for i in range(torch.cuda.device_count()): | |
device_properties = torch.cuda.get_device_properties(i) | |
dtype = "float16" if device_properties.major <= 7 else "bfloat16" # tesla and turing architectures | |
else: | |
dtype = "float16" | |
print(f"using dtype={dtype}") | |
return dtype | |
def get_device() -> str: | |
return "cuda" if torch.cuda.is_available() else "cpu" | |