system / app.py
Owos's picture
edited UI
789b17b
raw
history blame
10.1 kB
import pandas as pd
import streamlit as st
import numpy as np
import threading
import torch
import numpy as np
from styling import footer
from transformers import AutoTokenizer, AutoModelWithLMHead
from huggingface_hub import HfApi, hf_hub_download
from torch.utils.data import Dataset, DataLoader
st.set_page_config(
page_title="Koya Recommendation System", initial_sidebar_state="auto",
)
st.markdown(
"""
# Koya Recommeder System
#### πŸ‘‹ Welcome to the to the Koya recommendation system. This system recommeds an LLM for you when you provide a sample sentence in your target language and select a list of models.
You can try it below \n\n\n"""
)
@st.cache
def get_model_infos(multilingual="multilingual"):
api = HfApi()
model_infos = api.list_models(filter=["fill-mask", multilingual], cardData=True)
data = [["id", "task", "lang", "sha"]]
count = 0
for model in model_infos:
try:
data.append(
[
model.modelId,
model.pipeline_tag,
model.cardData["language"],
model.sha,
]
)
except:
data.append([model.modelId, model.pipeline_tag, None, model.sha])
df = pd.DataFrame.from_records(data[1:], columns=data[0])
return df
class MLMDataset(Dataset):
def __init__(self, sentence, tokenizer, MLM_MASK_TOKEN, MLM_UNK_TOKEN):
self.sentence = sentence
self.tokenizer = tokenizer
self.tensor_input = self.tokenizer(sentence, return_tensors="pt")["input_ids"]
self.num_samples = self.tensor_input.size()[-1] - 2
self.batch_input = self.tensor_input.repeat(self.num_samples, 1)
self.random_ids = np.random.choice(
[i for i in range(1, self.tensor_input.size(1) - 1)],
self.num_samples,
replace=False,
) # ensuring that the masking is not done on the BOS and EOS tokens since they are not connected to the sentence itself.
self.random_ids = torch.Tensor(self.random_ids).long().unsqueeze(0).T
# Added by Chris Emezue on 29.01.2023
# Add a term called unk_mask, such that p(w|...) is 0 if w is unk and p(w|...) otherwise
unk_mask = torch.ones(
self.batch_input.size()[0],
self.batch_input.size()[1],
self.tokenizer.vocab_size,
)
batch_input_for_unk = self.batch_input.unsqueeze(-1).expand(unk_mask.size())
self.unk_mask = unk_mask.masked_fill(batch_input_for_unk == MLM_UNK_TOKEN, 0)
self.mask = torch.zeros(self.batch_input.size())
src = torch.ones(self.batch_input.size(0)).unsqueeze(0).T
self.mask.scatter_(1, self.random_ids, src)
self.masked_input = self.batch_input.masked_fill(self.mask == 1, MLM_MASK_TOKEN)
self.labels = self.batch_input.masked_fill(
self.masked_input != MLM_MASK_TOKEN, -100
)
# If logits change when labels is not set to -100:
# If we are using the logits, this does not change it then. but if are using the loss,
# then this has an effect.
assert (
self.masked_input.shape[0]
== self.labels.shape[0]
== self.mask.shape[0]
== self.unk_mask.shape[0]
)
def __len__(self):
return self.masked_input.shape[0]
def __getitem__(self, idx):
return (
self.masked_input[idx],
self.mask[idx],
self.labels[idx],
self.unk_mask[idx],
)
def get_sense_score_batched(
sentence, tokenizer, model, MLM_MASK_TOKEN, MLM_UNK_TOKEN, BATCH_SIZE
):
mlm_dataset = MLMDataset(sentence, tokenizer, MLM_MASK_TOKEN, MLM_UNK_TOKEN)
dataloader = DataLoader(mlm_dataset, batch_size=BATCH_SIZE)
score = 1
for i, batch in enumerate(dataloader):
masked_input, mask, labels, unk_mask = batch
output = model(masked_input, labels=labels)
logits_ = output["logits"]
logits = (
logits_ * unk_mask
) # Penalizing the unk tokens by setting their probs to zero
indices = torch.nonzero(mask)
logits_of_interest = logits[indices[:, 0], indices[:, 1], :]
labels_of_interest = labels[indices[:, 0], indices[:, 1]]
log_probs = logits_of_interest.gather(1, labels_of_interest.view(-1, 1))
batch_score = (
(log_probs.sum() / (-1 * mlm_dataset.num_samples)).exp().item()
) # exp(x+y) = exp(x)*exp(y)
score *= batch_score
return score
def get_sense_score(
sentence, tokenizer, model, MLM_MASK_TOKEN, MLM_UNK_TOKEN, num_samples
):
"""
IDEA
-----------------
PP = perplexity(P) where perplexity(P) function just computes:
(p_1*p_*p_3*...*p_N)^(-1/N) for p_i in P
In practice you need to do the computation in log space to avoid underflow:
e^-((log(p_1) + log(p_2) + ... + log(p_N)) / N)
Note: everytime you run this function, the results change slightly (but the ordering should be relatively the same),
because the tokens to mask are chosen randomly.
"""
tensor_input = tokenizer(sentence, return_tensors="pt")["input_ids"]
batch_input = tensor_input.repeat(num_samples, 1)
random_ids = np.random.choice(
[i for i in range(1, tensor_input.size(1) - 1)], num_samples, replace=False
) # ensuring that the masking is not done on the BOS and EOS tokens since they are not connected to the sentence itself.
random_ids = torch.Tensor(random_ids).long().unsqueeze(0).T
# Added by Chris Emezue on 29.01.2023
# Add a term called unk_mask, such that p(w|...) is 0 if w is unk and p(w|...) otherwise
unk_mask = torch.ones(
batch_input.size()[0], batch_input.size()[1], tokenizer.vocab_size
)
batch_input_for_unk = batch_input.unsqueeze(-1).expand(unk_mask.size())
unk_mask = unk_mask.masked_fill(batch_input_for_unk == MLM_UNK_TOKEN, 0)
mask = torch.zeros(batch_input.size())
src = torch.ones(batch_input.size(0)).unsqueeze(0).T
mask.scatter_(1, random_ids, src)
masked_input = batch_input.masked_fill(mask == 1, MLM_MASK_TOKEN)
labels = batch_input.masked_fill(masked_input != MLM_MASK_TOKEN, -100)
# If logits change when labels is not set to -100:
# If we are using the logits, this does not change it then. but if are using the loss,
# then this has an effect.
output = model(masked_input, labels=labels)
logits_ = output["logits"]
logits = (
logits_ * unk_mask
) # Penalizing the unk tokens by setting their probs to zero
indices = torch.nonzero(mask)
logits_of_interest = logits[indices[:, 0], indices[:, 1], :]
labels_of_interest = labels[indices[:, 0], indices[:, 1]]
log_probs = logits_of_interest.gather(1, labels_of_interest.view(-1, 1))
score = (log_probs.sum() / (-1 * num_samples)).exp().item()
return score
def sort_dictionary(dict):
keys = list(dict.keys())
values = list(dict.values())
sorted_value_index = np.argsort(values)
sorted_dict = {keys[i]: values[i] for i in sorted_value_index}
return sorted_dict
def set_seed():
np.random.seed(2023)
torch.manual_seed(2023)
with st.sidebar:
st.image("Koya_Presentation-removebg-preview.png")
st.subheader("Abstract")
st.markdown(
"""
<div style="text-align: justify">
<h6> Pretrained large language models (LLMs) are widely used for various downstream tasks in different languages. However, selecting the best
LLM (from a large set of potential LLMs) for a given downstream task and language is a challenging and computationally expensive task, making
the efficient use of LLMs difficult for low-compute communities. To address this challenge, we present Koya, a recommender system built to assist
researchers and practitioners in choosing the right LLM for their task and language, without ever having to finetune the LLMs. Koya is built with
the Koya Pseudo-Perplexity (KPPPL), our adaptation of the pseudo perplexity, and ranks LLMs in order of compatibility with the language of interest,
making it easier and cheaper to choose the most compatible LLM. By evaluating Koya using five pretrained LLMs and three African languages
(Yoruba, Kinyarwanda, and Amharic), we show an average recommender accuracy of 95%, demonstrating its effectiveness. Koya aims to offer
an easy to use (through a simple web interface accessible at https://huggingface.co/spaces/koya-recommender/system), cost-effective, fast and
efficient tool to assist researchers and practitioners with low or limited compute access.</h6>
</div>
""",
unsafe_allow_html=True,
)
url = "https://share.streamlit.io/mesmith027/streamlit_webapps/main/MC_pi/streamlit_app.py"
st.write("check out the paper [here](%s)" % url)
footer()
sentence = st.text_input("Please input a sample sentence in the target language")
models = get_model_infos(multilingual=None)
selected_models = st.multiselect(
"Select of number of models you would like to compare",
models["id"],
max_selections=3,
)
run = st.button("Get Scores")
if run:
progress_text = "Computing recommendation Scores"
st.write(progress_text)
my_bar = st.progress(0)
scores = {}
for index, model_id in enumerate(selected_models):
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelWithLMHead.from_pretrained(model_id)
if model_id.startswith("castorini"):
tokenizer.model_max_length = 512
MLM_MASK_TOKEN = tokenizer.mask_token_id # [(103, '[MASK]')]
MLM_UNK_TOKEN = tokenizer.unk_token_id
BATCH_SIZE = 1
score = get_sense_score_batched(
sentence, tokenizer, model, MLM_MASK_TOKEN, MLM_UNK_TOKEN, BATCH_SIZE
)
scores[model_id] = score
my_bar.progress(index + 1 / len(selected_models))
scores = sort_dictionary(scores)
st.write("Our recommendation is:", scores)