Spaces:
Runtime error
Runtime error
File size: 5,031 Bytes
b1aad3c 74b0366 b1aad3c 4013271 b1aad3c 4013271 b1aad3c 18eff01 6c51676 b1aad3c 36ac3bd b1aad3c 6c51676 b1aad3c 04b73df b1aad3c afbd3cd 918b9d0 afbd3cd b1aad3c 9b40951 b1aad3c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 |
import gradio as gr
import json
import os
import numpy as np
import torch
import transformers
import tokenizers
from model import BertAD
DICTIONARY = json.load(open('model/dict.json'))
TOKENIZER = tokenizers.BertWordPieceTokenizer(f"model/vocab.txt", lowercase=True)
MAX_LEN = 256
MODEL = BertAD()
vec = MODEL.state_dict()['bert.embeddings.position_ids']
chkp = torch.load(os.path.join('model', 'model_0.bin'), map_location='cpu')
chkp['bert.embeddings.position_ids'] = vec
MODEL.load_state_dict(chkp)
del chkp, vec
def sample_text(text, acronym, max_len):
text = text.split()
idx = text.index(acronym)
left_idx = max(0, idx - max_len//2)
right_idx = min(len(text), idx + max_len//2)
sampled_text = text[left_idx:right_idx]
return ' '.join(sampled_text)
def process_data(text, acronym, expansion, tokenizer, max_len):
text = str(text)
expansion = str(expansion)
acronym = str(acronym)
n_tokens = len(text.split())
if n_tokens>120:
text = sample_text(text, acronym, 120)
answers = acronym + ' ' + ' '.join(DICTIONARY[acronym])
start = answers.find(expansion)
end = start + len(expansion)
char_mask = [0]*len(answers)
for i in range(start, end):
char_mask[i] = 1
tok_answer = tokenizer.encode(answers)
answer_ids = tok_answer.ids
answer_offsets = tok_answer.offsets
answer_ids = answer_ids[1:-1]
answer_offsets = answer_offsets[1:-1]
target_idx = []
for i, (off1, off2) in enumerate(answer_offsets):
if sum(char_mask[off1:off2])>0:
target_idx.append(i)
start = target_idx[0]
end = target_idx[-1]
text_ids = tokenizer.encode(text).ids[1:-1]
token_ids = [101] + answer_ids + [102] + text_ids + [102]
offsets = [(0,0)] + answer_offsets + [(0,0)]*(len(text_ids) + 2)
mask = [1] * len(token_ids)
token_type = [0]*(len(answer_ids) + 1) + [1]*(2+len(text_ids))
text = answers + text
start = start + 1
end = end + 1
padding = max_len - len(token_ids)
if padding>=0:
token_ids = token_ids + ([0] * padding)
token_type = token_type + [1] * padding
mask = mask + ([0] * padding)
offsets = offsets + ([(0, 0)] * padding)
else:
token_ids = token_ids[0:max_len]
token_type = token_type[0:max_len]
mask = mask[0:max_len]
offsets = offsets[0:max_len]
assert len(token_ids)==max_len
assert len(mask)==max_len
assert len(offsets)==max_len
assert len(token_type)==max_len
return {
'ids': token_ids,
'mask': mask,
'token_type': token_type,
'offset': offsets,
'start': start,
'end': end,
'text': text,
'expansion': expansion,
'acronym': acronym,
}
def jaccard(str1, str2):
a = set(str1.lower().split())
b = set(str2.lower().split())
c = a.intersection(b)
return float(len(c)) / (len(a) + len(b) - len(c))
def evaluate_jaccard(text, selected_text, acronym, offsets, idx_start, idx_end):
filtered_output = ""
for ix in range(idx_start, idx_end + 1):
filtered_output += text[offsets[ix][0]: offsets[ix][1]]
if (ix+1) < len(offsets) and offsets[ix][1] < offsets[ix+1][0]:
filtered_output += " "
candidates = DICTIONARY[acronym]
candidate_jaccards = [jaccard(w.strip(), filtered_output.strip()) for w in candidates]
idx = np.argmax(candidate_jaccards)
return candidate_jaccards[idx], candidates[idx]
def disambiguate(text, acronym):
inputs = process_data(text, acronym, acronym, TOKENIZER, MAX_LEN)
ids = torch.tensor(inputs['ids'])
mask = torch.tensor(inputs['mask'])
token_type = torch.tensor(inputs['token_type'])
offsets = inputs['offset']
expansion = inputs['expansion']
acronym = inputs['acronym']
ids = torch.unsqueeze(ids, 0)
mask = torch.unsqueeze(mask, 0)
token_type = torch.unsqueeze(token_type, 0)
start_logits, end_logits = MODEL(ids, mask, token_type)
start_prob = torch.softmax(start_logits, axis=-1).detach().numpy()
end_prob = torch.softmax(end_logits, axis=-1).detach().numpy()
start_idx = np.argmax(start_prob[0,:])
end_idx = np.argmax(end_prob[0,:])
_, exp = evaluate_jaccard(text, expansion, acronym, offsets, start_idx, end_idx)
return exp
text = gr.inputs.Textbox(lines=5, label="Context",\
default="Particularly , we explore four CNN architectures , AlexNet , GoogLeNet , VGG-16 , and ResNet to derive features for all images in our dataset , which are labeled as private or public .")
acronym = gr.inputs.Dropdown(choices=sorted(list(DICTIONARY.keys())), label="Acronym", default="CNN")
expansion = gr.outputs.Textbox(label="Expansion")
iface = gr.Interface(fn=disambiguate, inputs=[text, acronym], outputs=expansion, \
title="Scientific Acronym Disambiguation", description="Demo of model based on https://arxiv.org/abs/2102.08818")
iface.launch() |