File size: 5,031 Bytes
b1aad3c
 
74b0366
b1aad3c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4013271
b1aad3c
4013271
b1aad3c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
18eff01
6c51676
 
b1aad3c
36ac3bd
b1aad3c
 
6c51676
 
 
 
b1aad3c
 
 
 
 
 
 
 
 
04b73df
b1aad3c
 
afbd3cd
 
 
918b9d0
afbd3cd
b1aad3c
9b40951
 
b1aad3c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
import gradio as gr
import json
import os
import numpy as np
import torch
import transformers
import tokenizers


from model import BertAD

DICTIONARY = json.load(open('model/dict.json'))
TOKENIZER = tokenizers.BertWordPieceTokenizer(f"model/vocab.txt", lowercase=True)
MAX_LEN = 256

MODEL = BertAD()
vec = MODEL.state_dict()['bert.embeddings.position_ids']
chkp = torch.load(os.path.join('model', 'model_0.bin'), map_location='cpu')
chkp['bert.embeddings.position_ids'] = vec
MODEL.load_state_dict(chkp)
del chkp, vec


def sample_text(text, acronym, max_len):
    text = text.split()
    idx = text.index(acronym)
    left_idx = max(0, idx - max_len//2)
    right_idx = min(len(text), idx + max_len//2)
    sampled_text = text[left_idx:right_idx]
    return ' '.join(sampled_text)

def process_data(text, acronym, expansion, tokenizer, max_len):

    text = str(text)
    expansion = str(expansion)
    acronym = str(acronym)

    n_tokens = len(text.split())
    if n_tokens>120:
        text = sample_text(text, acronym, 120)

    answers = acronym + ' ' + ' '.join(DICTIONARY[acronym])
    start = answers.find(expansion)
    end = start + len(expansion)

    char_mask = [0]*len(answers)
    for i in range(start, end):
        char_mask[i] = 1

    tok_answer = tokenizer.encode(answers)
    answer_ids = tok_answer.ids
    answer_offsets = tok_answer.offsets

    answer_ids = answer_ids[1:-1]
    answer_offsets = answer_offsets[1:-1]

    target_idx = []
    for i, (off1, off2) in enumerate(answer_offsets):
        if sum(char_mask[off1:off2])>0:
            target_idx.append(i)

    start = target_idx[0]
    end = target_idx[-1]


    text_ids = tokenizer.encode(text).ids[1:-1]

    token_ids = [101] + answer_ids + [102] + text_ids + [102]
    offsets =   [(0,0)] + answer_offsets + [(0,0)]*(len(text_ids) + 2)
    mask = [1] * len(token_ids)
    token_type = [0]*(len(answer_ids) + 1) + [1]*(2+len(text_ids))

    text = answers + text
    start = start + 1
    end = end + 1

    padding = max_len - len(token_ids)


    if padding>=0:
        token_ids = token_ids + ([0] * padding)
        token_type = token_type + [1] * padding
        mask = mask + ([0] * padding)
        offsets = offsets + ([(0, 0)] * padding)
    else:
        token_ids = token_ids[0:max_len]
        token_type = token_type[0:max_len]
        mask = mask[0:max_len]
        offsets = offsets[0:max_len]


    assert len(token_ids)==max_len
    assert len(mask)==max_len
    assert len(offsets)==max_len
    assert len(token_type)==max_len

    return {
            'ids': token_ids,
            'mask': mask,
            'token_type': token_type,
            'offset': offsets,
            'start': start,
            'end': end,  
            'text': text,
            'expansion': expansion,
            'acronym': acronym,
        }


def jaccard(str1, str2): 
    a = set(str1.lower().split()) 
    b = set(str2.lower().split())
    c = a.intersection(b)
    return float(len(c)) / (len(a) + len(b) - len(c))

def evaluate_jaccard(text, selected_text, acronym, offsets, idx_start, idx_end):
    filtered_output = ""
    for ix in range(idx_start, idx_end + 1):
        filtered_output += text[offsets[ix][0]: offsets[ix][1]]
        if (ix+1) < len(offsets) and offsets[ix][1] < offsets[ix+1][0]:
            filtered_output += " "

    candidates = DICTIONARY[acronym]
    candidate_jaccards = [jaccard(w.strip(), filtered_output.strip()) for w in candidates]
    idx = np.argmax(candidate_jaccards)

    return candidate_jaccards[idx], candidates[idx]



def disambiguate(text, acronym):
    
    inputs = process_data(text, acronym, acronym, TOKENIZER, MAX_LEN)
    ids = torch.tensor(inputs['ids'])
    mask = torch.tensor(inputs['mask'])
    token_type = torch.tensor(inputs['token_type'])
    offsets = inputs['offset']
    expansion = inputs['expansion']
    acronym = inputs['acronym']

    ids = torch.unsqueeze(ids, 0)
    mask = torch.unsqueeze(mask, 0)
    token_type = torch.unsqueeze(token_type, 0)

    start_logits, end_logits = MODEL(ids, mask, token_type)

    start_prob = torch.softmax(start_logits, axis=-1).detach().numpy()
    end_prob = torch.softmax(end_logits, axis=-1).detach().numpy()
    
    
    start_idx = np.argmax(start_prob[0,:])
    end_idx = np.argmax(end_prob[0,:])

    _, exp = evaluate_jaccard(text, expansion, acronym, offsets, start_idx, end_idx)
    return exp

text = gr.inputs.Textbox(lines=5, label="Context",\
     default="Particularly , we explore four CNN architectures , AlexNet , GoogLeNet , VGG-16 , and ResNet to derive features for all images in our dataset , which are labeled as private or public .")

acronym = gr.inputs.Dropdown(choices=sorted(list(DICTIONARY.keys())), label="Acronym", default="CNN")
expansion = gr.outputs.Textbox(label="Expansion")

iface = gr.Interface(fn=disambiguate, inputs=[text, acronym], outputs=expansion, \
    title="Scientific Acronym Disambiguation", description="Demo of model based on https://arxiv.org/abs/2102.08818")
iface.launch()