Upload 2 files
Browse files- .gitattributes +1 -0
- app.py +60 -0
- pokemon-model.keras +3 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
pokemon-model.keras filter=lfs diff=lfs merge=lfs -text
|
app.py
ADDED
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# %%
|
2 |
+
import gradio as gr
|
3 |
+
import numpy as np
|
4 |
+
from tensorflow.keras.models import load_model
|
5 |
+
from tensorflow.keras.applications.resnet50 import preprocess_input
|
6 |
+
from PIL import Image
|
7 |
+
|
8 |
+
# Load the pre-trained Keras model
|
9 |
+
model = load_model('pokemon-model.keras')
|
10 |
+
|
11 |
+
# Define the class labels
|
12 |
+
class_labels = ['Bulbasaur', 'Glumanda', 'Pikachu'] # Ensure this matches the training order
|
13 |
+
|
14 |
+
# Define the image processing and prediction function
|
15 |
+
def predict_image(img):
|
16 |
+
# Ensure the image is a PIL image
|
17 |
+
if not isinstance(img, Image.Image):
|
18 |
+
img = Image.fromarray(img)
|
19 |
+
|
20 |
+
# Resize the image to the size expected by ResNet50
|
21 |
+
img = img.resize((224, 224))
|
22 |
+
|
23 |
+
# Convert the image to a numpy array
|
24 |
+
img_array = np.array(img)
|
25 |
+
|
26 |
+
# Convert the image array to a batch of size 1 (1, 224, 224, 3)
|
27 |
+
img_array = np.expand_dims(img_array, axis=0)
|
28 |
+
|
29 |
+
# Preprocess the image array using ResNet50's preprocessing
|
30 |
+
img_array = preprocess_input(img_array)
|
31 |
+
|
32 |
+
# Make prediction
|
33 |
+
prediction = model.predict(img_array)
|
34 |
+
|
35 |
+
# Get the label with the highest probability
|
36 |
+
predicted_index = int(np.argmax(prediction))
|
37 |
+
predicted_label = class_labels[predicted_index]
|
38 |
+
|
39 |
+
return predicted_label
|
40 |
+
|
41 |
+
# Create the Gradio interface with multiple examples
|
42 |
+
iface = gr.Interface(
|
43 |
+
fn=predict_image,
|
44 |
+
inputs=gr.Image(image_mode='RGB'),
|
45 |
+
outputs='label',
|
46 |
+
examples=[['00000015.jpg'], ['20.png'], ['glumanda.jpg'], ['j67j7.png'], ['pikachu.jpg']],
|
47 |
+
title="Pokémon Classification",
|
48 |
+
description="Upload an image of a Pokémon to classify it using the pre-trained model."
|
49 |
+
)
|
50 |
+
|
51 |
+
# Launch the interface inline in the Jupyter Notebook
|
52 |
+
iface.launch(inline=True)
|
53 |
+
|
54 |
+
|
55 |
+
# %%
|
56 |
+
# Print model summary to verify input shape
|
57 |
+
print(model.summary())
|
58 |
+
|
59 |
+
|
60 |
+
|
pokemon-model.keras
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:181468828df84cfa5b53ce025281ed4d58943d7c89c5e136da4ff7eea4c10550
|
3 |
+
size 250797031
|