Spaces:
Runtime error
Runtime error
from typing import Any, List, Optional, Type | |
from pydantic import BaseModel, Extra, Field | |
from langchain.base_language import BaseLanguageModel | |
from langchain.chains.qa_with_sources.retrieval import RetrievalQAWithSourcesChain | |
from langchain.chains.retrieval_qa.base import RetrievalQA | |
from langchain.document_loaders.base import BaseLoader | |
from langchain.embeddings.base import Embeddings | |
from langchain.embeddings.openai import OpenAIEmbeddings | |
from langchain.llms.openai import OpenAI | |
from langchain.schema import Document | |
from langchain.text_splitter import RecursiveCharacterTextSplitter, TextSplitter | |
from langchain.vectorstores.base import VectorStore | |
from langchain.vectorstores.chroma import Chroma | |
def _get_default_text_splitter() -> TextSplitter: | |
return RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=0) | |
class VectorStoreIndexWrapper(BaseModel): | |
"""Wrapper around a vectorstore for easy access.""" | |
vectorstore: VectorStore | |
class Config: | |
"""Configuration for this pydantic object.""" | |
extra = Extra.forbid | |
arbitrary_types_allowed = True | |
def query( | |
self, question: str, llm: Optional[BaseLanguageModel] = None, **kwargs: Any | |
) -> str: | |
"""Query the vectorstore.""" | |
llm = llm or OpenAI(temperature=0) | |
chain = RetrievalQA.from_chain_type( | |
llm, retriever=self.vectorstore.as_retriever(), **kwargs | |
) | |
return chain.run(question) | |
def query_with_sources( | |
self, question: str, llm: Optional[BaseLanguageModel] = None, **kwargs: Any | |
) -> dict: | |
"""Query the vectorstore and get back sources.""" | |
llm = llm or OpenAI(temperature=0) | |
chain = RetrievalQAWithSourcesChain.from_chain_type( | |
llm, retriever=self.vectorstore.as_retriever(), **kwargs | |
) | |
return chain({chain.question_key: question}) | |
class VectorstoreIndexCreator(BaseModel): | |
"""Logic for creating indexes.""" | |
vectorstore_cls: Type[VectorStore] = Chroma | |
embedding: Embeddings = Field(default_factory=OpenAIEmbeddings) | |
text_splitter: TextSplitter = Field(default_factory=_get_default_text_splitter) | |
vectorstore_kwargs: dict = Field(default_factory=dict) | |
class Config: | |
"""Configuration for this pydantic object.""" | |
extra = Extra.forbid | |
arbitrary_types_allowed = True | |
def from_loaders(self, loaders: List[BaseLoader]) -> VectorStoreIndexWrapper: | |
"""Create a vectorstore index from loaders.""" | |
docs = [] | |
for loader in loaders: | |
docs.extend(loader.load()) | |
return self.from_documents(docs) | |
def from_documents(self, documents: List[Document]) -> VectorStoreIndexWrapper: | |
"""Create a vectorstore index from documents.""" | |
sub_docs = self.text_splitter.split_documents(documents) | |
vectorstore = self.vectorstore_cls.from_documents( | |
sub_docs, self.embedding, **self.vectorstore_kwargs | |
) | |
return VectorStoreIndexWrapper(vectorstore=vectorstore) | |
def from_persistent_index(self, path: str) -> VectorStoreIndexWrapper: | |
"""Load a vectorstore index from a persistent index.""" | |
vectorstore = self.vectorstore_cls(persist_directory=path, embedding_function=self.embedding) | |
return VectorStoreIndexWrapper(vectorstore=vectorstore) |