File size: 34,166 Bytes
f8c5b0d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
//adapted from RWKV.cpp repo under MIT license
// https://github.com/saharNooby/rwkv.cpp

#include "otherarch.h"

#include "rwkv_v2.h"
#include "ggml_v2.h"

#include <string>
#include <vector>
#include <thread>
#include <cassert>
#include <cinttypes>
#include <cmath>
#include <cstdio>
#include <cstring>
#include <fstream>
#include <iostream>
#include <unordered_map>

#include "rwkv_vocab.cpp"

// --- Utilities ---

// Checks that x is not false. If x is false, prints fancy message to stderr and returns 0.
#define RWKV_V2_ASSERT_FALSE(x, ...) \
    do { \
        if (!(x)) { \
            fprintf(stderr, __VA_ARGS__); \
            fprintf(stderr, "\n%s:%d: %s\n", __FILE__, __LINE__, #x); \
            return false; \
        } \
    } while (0)

// Checks that x is not false. If x is false, prints fancy message to stderr and returns NULL.
#define RWKV_V2_ASSERT_NULL(x, ...) \
    do { \
        if (!(x)) { \
            fprintf(stderr, __VA_ARGS__); \
            fprintf(stderr, "\n%s:%d: %s\n", __FILE__, __LINE__, #x); \
            return NULL; \
        } \
    } while (0)

// Reads single int32 value from a file.
bool rwkv_v2_read_int32(FILE * file, int32_t * dest) {
    RWKV_V2_ASSERT_FALSE(fread(dest, 4, 1, file) == 1, "Failed to read an int32 value from a file");
    return true;
}

#define GGML_V2_TYPE_UNKNOWN GGML_V2_TYPE_COUNT

#define RWKV_V2_FORMAT_TYPE_COUNT 10

static const ggml_v2_type FORMAT_TYPE_TO_GGML_V2_TYPE[RWKV_V2_FORMAT_TYPE_COUNT] = {
    GGML_V2_TYPE_F32,
    GGML_V2_TYPE_F16,
    GGML_V2_TYPE_Q4_0,
    GGML_V2_TYPE_Q4_1,
    GGML_V2_TYPE_UNKNOWN, // Unused
    GGML_V2_TYPE_Q4_2,
    GGML_V2_TYPE_UNKNOWN, // Unused
    GGML_V2_TYPE_Q5_0,
    GGML_V2_TYPE_Q5_1,
    GGML_V2_TYPE_Q8_0
};

static int32_t rwkv_v2_format_name_to_format_type(const char * format_name) {
    if (strcmp(format_name, "Q4_0") == 0) return 2;
    if (strcmp(format_name, "Q4_1") == 0) return 3;
    if (strcmp(format_name, "Q4_2") == 0) return 5;
    if (strcmp(format_name, "Q5_0") == 0) return 7;
    if (strcmp(format_name, "Q5_1") == 0) return 8;
    if (strcmp(format_name, "Q8_0") == 0) return 9;

    return -1;
}

// --- Model definition and loading utilities ---

struct rwkv_v2_layer {
    struct ggml_v2_tensor * ln1_weight;
    struct ggml_v2_tensor * ln1_bias;

    // RWKV, also called "attention" by the author.
    struct ggml_v2_tensor * att_time_mix_k;
    struct ggml_v2_tensor * att_time_mix_v;
    struct ggml_v2_tensor * att_time_mix_r;
    struct ggml_v2_tensor * att_time_first;
    struct ggml_v2_tensor * att_time_decay;
    struct ggml_v2_tensor * att_key;
    struct ggml_v2_tensor * att_value;
    struct ggml_v2_tensor * att_receptance;
    struct ggml_v2_tensor * att_output;

    struct ggml_v2_tensor * ln2_weight;
    struct ggml_v2_tensor * ln2_bias;

    // FFN.
    struct ggml_v2_tensor * ffn_time_mix_k;
    struct ggml_v2_tensor * ffn_time_mix_r;
    struct ggml_v2_tensor * ffn_key;
    struct ggml_v2_tensor * ffn_value;
    struct ggml_v2_tensor * ffn_receptance;
};

struct rwkv_v2_model {
    int32_t n_vocab;
    int32_t n_layer;
    int32_t n_embed;
    // 0 for float32, 1 for float16.
    int32_t data_type;

    struct ggml_v2_tensor * emb;

    struct ggml_v2_tensor * ln0_weight;
    struct ggml_v2_tensor * ln0_bias;

    std::vector<rwkv_v2_layer> layers;

    struct ggml_v2_tensor * ln_out_weight;
    struct ggml_v2_tensor * ln_out_bias;

    struct ggml_v2_tensor * head;
};

// Finds model parameter by key and sets it into dest.
// If the parameter was not found, returns false.
bool rwkv_v2_set_parameter(std::unordered_map<std::string, struct ggml_v2_tensor *> * parameters, char * key, struct ggml_v2_tensor ** dest) {
    struct ggml_v2_tensor * parameter = (*parameters)[key];
    RWKV_V2_ASSERT_FALSE(parameter != NULL, "Parameter %s not found in model file", key);
    *dest = parameter;
    return true;
}

// Finds block parameter by block index and key and sets it into dest.
// If the parameter was not found, returns false.
bool rwkv_v2_set_block_parameter(std::unordered_map<std::string, struct ggml_v2_tensor *> * parameters, int32_t block_index, char * key, struct ggml_v2_tensor ** dest) {
    char full_key[128];
    sprintf(full_key, "blocks.%d.%s", block_index, key);
    return rwkv_v2_set_parameter(parameters, full_key, dest);
}

// --- Operators ---

void rwkv_v2_exp_impl(const int n_cols, float * dest, const float * src) {
    for (int i = 0; i < n_cols; i++) {
        dest[i] = expf(src[i]);
    }
}

void rwkv_v2_1_minus_x_impl(const int n_cols, float * dest, const float * src) {
    for (int i = 0; i < n_cols; i++) {
        dest[i] = 1.0F - src[i];
    }
}

void rwkv_v2_sigmoid_impl(const int n_cols, float * dest, const float * src) {
    for (int i = 0; i < n_cols; i++) {
        dest[i] = 1.0F / (1.0F + expf(-src[i]));
    }
}

void rwkv_v2_max_impl(const int n_cols, float * dest, const float * src0, const float * src1) {
    for (int i = 0; i < n_cols; i++) {
        dest[i] = fmaxf(src0[i], src1[i]);
    }
}

struct ggml_v2_tensor * rwkv_v2_exp(ggml_v2_context * ctx, struct ggml_v2_tensor * x) {
    return ggml_v2_map_unary_f32(ctx, x, rwkv_v2_exp_impl);
}

struct ggml_v2_tensor * rwkv_v2_1_minus_x(ggml_v2_context * ctx, struct ggml_v2_tensor * x) {
    return ggml_v2_map_unary_f32(ctx, x, rwkv_v2_1_minus_x_impl);
}

struct ggml_v2_tensor * rwkv_v2_sigmoid(ggml_v2_context * ctx, struct ggml_v2_tensor * x) {
    return ggml_v2_map_unary_f32(ctx, x, rwkv_v2_sigmoid_impl);
}

struct ggml_v2_tensor * rwkv_v2_max(ggml_v2_context * ctx, struct ggml_v2_tensor * x, struct ggml_v2_tensor * y) {
    return ggml_v2_map_binary_f32(ctx, x, y, rwkv_v2_max_impl);
}

struct ggml_v2_tensor * rwkv_v2_layer_norm(ggml_v2_context * ctx, struct ggml_v2_tensor * x, struct ggml_v2_tensor * weight, struct ggml_v2_tensor * bias) {
    // LayerNorm in RWKV is `x = (x - mean(x)) / sqrt(variance(x) + 1e-5) * weight + bias`
    // Looks like ggml_v2_norm does the first part, we only need to apply weight & bias.
    x = ggml_v2_norm(ctx, x);
    x = ggml_v2_mul(ctx, x, weight);
    x = ggml_v2_add(ctx, x, bias);
    return x;
}

// --- Implementation ---

struct rwkv_v2_context {
    struct rwkv_v2_model * model;
    struct ggml_v2_tensor * token_index;
    struct ggml_v2_tensor * state;
    struct ggml_v2_tensor ** state_parts;
    struct ggml_v2_tensor * logits;
    struct ggml_v2_context * ctx;
    struct ggml_v2_cgraph * graph;
    bool freed;
    float * state_in = 0; //stores input state, or use null for a new state
    float * state_out = 0; //stores address of output state buffer
    float * logits_out = 0; //stores address of output logit buffer
};

struct rwkv_v2_context * rwkv_v2_init_from_file(const char * file_path, uint32_t n_threads) {
    FILE * file = fopen(file_path, "rb");
    RWKV_V2_ASSERT_NULL(file != NULL, "Failed to open file %s", file_path);

    int32_t magic;
    rwkv_v2_read_int32(file, &magic);
    RWKV_V2_ASSERT_NULL(magic == RWKV_V2_FILE_MAGIC, "Unexpected magic value %d", magic);

    int32_t version;
    rwkv_v2_read_int32(file, &version);
    RWKV_V2_ASSERT_NULL(version == RWKV_V2_FILE_VERSION, "Unsupported file version %d", version);

    struct rwkv_v2_model * model = (struct rwkv_v2_model *) calloc(1, sizeof(struct rwkv_v2_model));

    rwkv_v2_read_int32(file, &(model->n_vocab));
    RWKV_V2_ASSERT_NULL(model->n_vocab > 0, "Non-positive n_vocab %d", model->n_vocab);

    rwkv_v2_read_int32(file, &(model->n_embed));
    RWKV_V2_ASSERT_NULL(model->n_embed > 0, "Non-positive n_embed %d", model->n_embed);

    rwkv_v2_read_int32(file, &(model->n_layer));
    RWKV_V2_ASSERT_NULL(model->n_layer > 0, "Non-positive n_layer %d", model->n_layer);

    rwkv_v2_read_int32(file, &(model->data_type));
    RWKV_V2_ASSERT_NULL(model->data_type >= 0 && model->data_type < RWKV_V2_FORMAT_TYPE_COUNT, "Unsupported model data type %d", model->data_type);

    RWKV_V2_ASSERT_NULL(
        model->data_type != 4,
        "Models in Q4_1_O format cannot be loaded anymore because the format was removed. You need to quantize the model into another format"
    );

    RWKV_V2_ASSERT_NULL(
        model->data_type != 6,
        "Models in Q4_3 format cannot be loaded anymore because the format was removed. You need to quantize the model into another format"
    );

    // Parameter tensors would take at least this amount in memory.
    size_t file_size;

    {
        auto fin = std::ifstream(file_path, std::ios::binary);
        RWKV_V2_ASSERT_NULL(fin, "Failed to open file %s", file_path);
        fin.seekg(0, fin.end);
        file_size = fin.tellg();
        fin.close();
    }

    size_t memory_required = file_size +
        // Intermediary vectors for calculation; there are around 100 calls to ggml
        size_t(100) * model->n_embed * sizeof(float) +
        // State, in and out
        size_t(2) * 5 * model->n_layer * model->n_embed * sizeof(float) +
        // Logits
        size_t(model->n_vocab) * sizeof(float) +
        // +256 MB just for any overhead
        // TODO This is too much for smaller models; need a more proper and robust way of measuring required memory
        size_t(256) * 1024 * 1024;

    // Initialize ggml
    struct ggml_v2_init_params params;
    params.mem_size = memory_required;
    params.mem_buffer = NULL;
    params.no_alloc = false;
    struct ggml_v2_context * ctx = ggml_v2_init(params);

    std::unordered_map<std::string, struct ggml_v2_tensor *> parameters;

    while (true) {
        int32_t dim_count;
        size_t elements_read = fread(&dim_count, 4, 1, file);

        if (feof(file)) {
            break;
        }

        RWKV_V2_ASSERT_NULL(elements_read == 1, "Failed to read dimension count");
        RWKV_V2_ASSERT_NULL(dim_count == 1 || dim_count == 2, "Unsupported dimension count %d", dim_count);

        int32_t key_length;
        rwkv_v2_read_int32(file, &key_length);
        RWKV_V2_ASSERT_NULL(key_length > 0, "Non-positive key length %d", key_length);

        int32_t data_type;
        rwkv_v2_read_int32(file, &data_type);
        RWKV_V2_ASSERT_NULL(data_type >= 0 && data_type < RWKV_V2_FORMAT_TYPE_COUNT, "Unsupported parameter data type %d", data_type);

        ggml_v2_type ggml_v2_data_type = FORMAT_TYPE_TO_GGML_V2_TYPE[data_type];

        RWKV_V2_ASSERT_NULL(ggml_v2_data_type != GGML_V2_TYPE_UNKNOWN, "Unsupported parameter data type %d", data_type);

        struct ggml_v2_tensor * tensor;

        int32_t x = -1;
        int32_t y = -1;

        if (dim_count == 1) {
            rwkv_v2_read_int32(file, &x);
            tensor = ggml_v2_new_tensor_1d(ctx, ggml_v2_data_type, x);
        } else if (dim_count == 2) {
            rwkv_v2_read_int32(file, &x);
            rwkv_v2_read_int32(file, &y);
            tensor = ggml_v2_new_tensor_2d(ctx, ggml_v2_data_type, x, y);
        } else {
            abort();
        }

        std::string key(key_length, 0);
        RWKV_V2_ASSERT_NULL(fread(&key[0], 1, key_length, file) == uint32_t(key_length), "Failed to read parameter key");

        RWKV_V2_ASSERT_NULL(fread(tensor->data, 1, ggml_v2_nbytes(tensor), file) == ggml_v2_nbytes(tensor), "Failed to read parameter data");

        parameters[key] = tensor;
    }

    fclose(file);

    model->layers.resize(model->n_layer);

    rwkv_v2_set_parameter(&parameters, "emb.weight", &(model->emb));

    rwkv_v2_set_parameter(&parameters, "blocks.0.ln0.weight", &(model->ln0_weight));
    rwkv_v2_set_parameter(&parameters, "blocks.0.ln0.bias", &(model->ln0_bias));

    for (int i = 0; i < model->n_layer; i++) {
        rwkv_v2_layer layer = model->layers[i];

        rwkv_v2_set_block_parameter(&parameters, i, "ln1.weight", &(layer.ln1_weight));
        rwkv_v2_set_block_parameter(&parameters, i, "ln1.bias", &(layer.ln1_bias));

        rwkv_v2_set_block_parameter(&parameters, i, "att.time_mix_k", &(layer.att_time_mix_k));
        rwkv_v2_set_block_parameter(&parameters, i, "att.time_mix_v", &(layer.att_time_mix_v));
        rwkv_v2_set_block_parameter(&parameters, i, "att.time_mix_r", &(layer.att_time_mix_r));
        rwkv_v2_set_block_parameter(&parameters, i, "att.time_first", &(layer.att_time_first));
        rwkv_v2_set_block_parameter(&parameters, i, "att.time_decay", &(layer.att_time_decay));
        rwkv_v2_set_block_parameter(&parameters, i, "att.key.weight", &(layer.att_key));
        rwkv_v2_set_block_parameter(&parameters, i, "att.value.weight", &(layer.att_value));
        rwkv_v2_set_block_parameter(&parameters, i, "att.receptance.weight", &(layer.att_receptance));
        rwkv_v2_set_block_parameter(&parameters, i, "att.output.weight", &(layer.att_output));

        rwkv_v2_set_block_parameter(&parameters, i, "ln2.weight", &(layer.ln2_weight));
        rwkv_v2_set_block_parameter(&parameters, i, "ln2.bias", &(layer.ln2_bias));

        rwkv_v2_set_block_parameter(&parameters, i, "ffn.time_mix_k", &(layer.ffn_time_mix_k));
        rwkv_v2_set_block_parameter(&parameters, i, "ffn.time_mix_r", &(layer.ffn_time_mix_r));
        rwkv_v2_set_block_parameter(&parameters, i, "ffn.key.weight", &(layer.ffn_key));
        rwkv_v2_set_block_parameter(&parameters, i, "ffn.value.weight", &(layer.ffn_value));
        rwkv_v2_set_block_parameter(&parameters, i, "ffn.receptance.weight", &(layer.ffn_receptance));

        model->layers[i] = layer;
    }

    rwkv_v2_set_parameter(&parameters, "ln_out.weight", &(model->ln_out_weight));
    rwkv_v2_set_parameter(&parameters, "ln_out.bias", &(model->ln_out_bias));

    rwkv_v2_set_parameter(&parameters, "head.weight", &(model->head));

    // Verify order of dimensions
    struct ggml_v2_tensor * emb = model->emb;
    RWKV_V2_ASSERT_NULL(emb->n_dims == 2, "Unexpected dimension count of embedding matrix %d", emb->n_dims);
    RWKV_V2_ASSERT_NULL(emb->ne[0] == model->n_embed, "Unexpected dimension of embedding matrix %lld", emb->ne[0]);
    RWKV_V2_ASSERT_NULL(emb->ne[1] == model->n_vocab, "Unexpected dimension of embedding matrix %lld", emb->ne[1]);

    int32_t n_embed = model->n_embed;
    int32_t n_layer = model->n_layer;

    // Build graph
    struct ggml_v2_tensor * state = ggml_v2_new_tensor_1d(ctx, GGML_V2_TYPE_F32, n_layer * 5 * n_embed);

    // x = self.w.emb.weight[token]
    struct ggml_v2_tensor * token_index = ggml_v2_new_tensor_1d(ctx, GGML_V2_TYPE_I32, 1);
    struct ggml_v2_tensor * x = ggml_v2_get_rows(ctx, model->emb, token_index);

    // x = self.layer_norm(x, self.w.blocks[0].ln0)
    x = rwkv_v2_layer_norm(ctx, x, model->ln0_weight, model->ln0_bias);

    // We collect parts of new state here. Each part is (n_embed) vector.
    struct ggml_v2_tensor ** state_parts = new ggml_v2_tensor * [n_layer * 5];

    for (int i = 0; i < n_layer; i++) {
        auto layer = model->layers[i];

        // RWKV/time mixing
        {
            // self.layer_norm(x, self.w.blocks[i].ln1)
            struct ggml_v2_tensor * x0 = rwkv_v2_layer_norm(ctx, x, layer.ln1_weight, layer.ln1_bias);
            // state[5 * i + 1]
            struct ggml_v2_tensor * x_prev = ggml_v2_view_1d(ctx, state, n_embed, (5 * i + 1) * n_embed * sizeof(float));
            // xk = x * time_mix_k + state[5 * i + 1] * (1 - time_mix_k)
            // xv = x * time_mix_v + state[5 * i + 1] * (1 - time_mix_v)
            // xr = x * time_mix_r + state[5 * i + 1] * (1 - time_mix_r)
            struct ggml_v2_tensor * xk = ggml_v2_add(
                ctx,
                ggml_v2_mul(ctx, x0, layer.att_time_mix_k),
                ggml_v2_mul(ctx, x_prev, rwkv_v2_1_minus_x(ctx, layer.att_time_mix_k))
            );
            struct ggml_v2_tensor * xv = ggml_v2_add(
                ctx,
                ggml_v2_mul(ctx, x0, layer.att_time_mix_v),
                ggml_v2_mul(ctx, x_prev, rwkv_v2_1_minus_x(ctx, layer.att_time_mix_v))
            );
            struct ggml_v2_tensor * xr = ggml_v2_add(
                ctx,
                ggml_v2_mul(ctx, x0, layer.att_time_mix_r),
                ggml_v2_mul(ctx, x_prev, rwkv_v2_1_minus_x(ctx, layer.att_time_mix_r))
            );
            // state[5 * i + 1] = x
            state_parts[5 * i + 1] = x0;

            // r = torch.sigmoid(rw @ xr)
            struct ggml_v2_tensor * r = rwkv_v2_sigmoid(
                ctx,
                ggml_v2_mul_mat(ctx, layer.att_receptance, xr)
            );
            // k = kw @ xk
            struct ggml_v2_tensor * k = ggml_v2_mul_mat(ctx, layer.att_key, xk);
            // v = vw @ xv
            struct ggml_v2_tensor * v = ggml_v2_mul_mat(ctx, layer.att_value, xv);

            // aa = state[5 * i + 2]
            // bb = state[5 * i + 3]
            // pp = state[5 * i + 4]
            struct ggml_v2_tensor * aa = ggml_v2_view_1d(ctx, state, n_embed, (5 * i + 2) * n_embed * sizeof(float));
            struct ggml_v2_tensor * bb = ggml_v2_view_1d(ctx, state, n_embed, (5 * i + 3) * n_embed * sizeof(float));
            struct ggml_v2_tensor * pp = ggml_v2_view_1d(ctx, state, n_embed, (5 * i + 4) * n_embed * sizeof(float));

            // ww = time_first + k
            struct ggml_v2_tensor * ww = ggml_v2_add(ctx, layer.att_time_first, k);
            // qq = torch.maximum(pp, ww)
            struct ggml_v2_tensor * qq = rwkv_v2_max(ctx, pp, ww);
            // e1 = torch.exp(pp - qq)
            struct ggml_v2_tensor * e1 = rwkv_v2_exp(ctx, ggml_v2_sub(ctx, pp, qq));
            // e2 = torch.exp(ww - qq)
            struct ggml_v2_tensor * e2 = rwkv_v2_exp(ctx, ggml_v2_sub(ctx, ww, qq));
            // a = e1 * aa + e2 * v
            struct ggml_v2_tensor * a = ggml_v2_add(
                ctx,
                ggml_v2_mul(ctx, e1, aa),
                ggml_v2_mul(ctx, e2, v)
            );
            // b = e1 * bb + e2
            struct ggml_v2_tensor * b = ggml_v2_add(
                ctx,
                ggml_v2_mul(ctx, e1, bb),
                e2
            );
            // wkv = a / b
            struct ggml_v2_tensor * wkv = ggml_v2_div(ctx, a, b);
            // ww = pp + time_decay
            ww = ggml_v2_add(ctx, pp, layer.att_time_decay);
            // qq = torch.maximum(ww, k)
            qq = rwkv_v2_max(ctx, ww, k);
            // e1 = torch.exp(ww - qq)
            e1 = rwkv_v2_exp(ctx, ggml_v2_sub(ctx, ww, qq));
            // e2 = torch.exp(k - qq)
            e2 = rwkv_v2_exp(ctx, ggml_v2_sub(ctx, k, qq));
            // state[5 * i + 2] = e1 * aa + e2 * v
            state_parts[5 * i + 2] = ggml_v2_add(
                ctx,
                ggml_v2_mul(ctx, e1, aa),
                ggml_v2_mul(ctx, e2, v)
            );
            // state[5 * i + 3] = e1 * bb + e2
            state_parts[5 * i + 3] = ggml_v2_add(
                ctx,
                ggml_v2_mul(ctx, e1, bb),
                e2
            );
            // state[5 * i + 4] = qq
            state_parts[5 * i + 4] = qq;
            // ow @ (r * wkv)
            x = ggml_v2_add(
                ctx,
                x,
                ggml_v2_mul_mat(
                    ctx,
                    layer.att_output,
                    ggml_v2_mul(ctx, r, wkv)
                )
            );
        }

        // FFN/channel mixing
        {
            // self.layer_norm(x, self.w.blocks[i].ln2)
            struct ggml_v2_tensor * x0 = rwkv_v2_layer_norm(ctx, x, layer.ln2_weight, layer.ln2_bias);
            // state[5 * i + 0]
            struct ggml_v2_tensor * x_prev = ggml_v2_view_1d(ctx, state, n_embed, (5 * i + 0) * n_embed * sizeof(float));
            // xk = x * time_mix_k + state[5 * i + 0] * (1 - time_mix_k)
            // xr = x * time_mix_r + state[5 * i + 0] * (1 - time_mix_r)
            struct ggml_v2_tensor * xk = ggml_v2_add(
                ctx,
                ggml_v2_mul(ctx, x0, layer.ffn_time_mix_k),
                ggml_v2_mul(ctx, x_prev, rwkv_v2_1_minus_x(ctx, layer.ffn_time_mix_k))
            );
            struct ggml_v2_tensor * xr = ggml_v2_add(
                ctx,
                ggml_v2_mul(ctx, x0, layer.ffn_time_mix_r),
                ggml_v2_mul(ctx, x_prev, rwkv_v2_1_minus_x(ctx, layer.ffn_time_mix_r))
            );
            // state[5 * i + 0] = x
            state_parts[5 * i + 0] = x0;

            // r = torch.sigmoid(rw @ xr)
            struct ggml_v2_tensor * r = rwkv_v2_sigmoid(
                ctx,
                ggml_v2_mul_mat(ctx, layer.ffn_receptance, xr)
            );
            // k = torch.square(torch.relu(kw @ xk))
            struct ggml_v2_tensor * k = ggml_v2_sqr(ctx, ggml_v2_relu(
                ctx,
                ggml_v2_mul_mat(ctx, layer.ffn_key, xk)
            ));
            // r * (vw @ k)
            x = ggml_v2_add(
                ctx,
                x,
                ggml_v2_mul(
                    ctx,
                    r,
                    ggml_v2_mul_mat(ctx, layer.ffn_value, k)
                )
            );
        }
    }

    // x = self.layer_norm(x, self.w.ln_out)
    x = rwkv_v2_layer_norm(ctx, x, model->ln_out_weight, model->ln_out_bias);

    // x = (self.w.head.weight @ x).float()
    struct ggml_v2_tensor * logits = ggml_v2_mul_mat(ctx, model->head, x);

    struct ggml_v2_cgraph * graph = (struct ggml_v2_cgraph *) calloc(1, sizeof(struct ggml_v2_cgraph));

    *graph = ggml_v2_build_forward(logits);

    for (int i = 0; i < n_layer * 5; i++) {
       ggml_v2_build_forward_expand(graph, state_parts[i]);
    }

    graph->n_threads = n_threads;

    struct rwkv_v2_context * rwkv_ctx = (struct rwkv_v2_context *) calloc(1, sizeof(struct rwkv_v2_context));
    rwkv_ctx->model = model;
    rwkv_ctx->token_index = token_index;
    rwkv_ctx->state = state;
    rwkv_ctx->state_parts = state_parts;
    rwkv_ctx->logits = logits;
    rwkv_ctx->ctx = ctx;
    rwkv_ctx->graph = graph;
    return rwkv_ctx;
}

uint32_t rwkv_v2_get_state_buffer_element_count(struct rwkv_v2_context * ctx) {
    return ctx->model->n_layer * 5 * ctx->model->n_embed;
}

uint32_t rwkv_v2_get_logits_buffer_element_count(struct rwkv_v2_context * ctx) {
    return ctx->model->n_vocab;
}

bool rwkv_v2_eval(struct rwkv_v2_context * ctx, int32_t token, float * state_in, float * state_out, float * logits_out) {
    RWKV_V2_ASSERT_FALSE(state_out != NULL, "state_out is NULL");
    RWKV_V2_ASSERT_FALSE(logits_out != NULL, "logits_out is NULL");

    int32_t n_layer = ctx->model->n_layer;
    int32_t n_embed = ctx->model->n_embed;
    int32_t n_vocab = ctx->model->n_vocab;

    RWKV_V2_ASSERT_FALSE(token >= 0 && token < n_vocab, "Token is out of range 0..%d", n_vocab - 1);

    ggml_v2_set_i32_1d(ctx->token_index, 0, token);

    if (state_in == NULL) {
        ggml_v2_set_f32(ctx->state, 0.0F);

        for (int i = 0; i < n_layer; i++) {
            // state[5 * i + 4] = -1e30
            ggml_v2_set_f32(
                ggml_v2_view_1d(ctx->ctx, ctx->state, n_embed, (5 * i + 4) * n_embed * sizeof(float)),
                -1e30F
            );
        }
    } else {
        memcpy(ctx->state->data, state_in, ctx->state->ne[0] * sizeof(float));
    }

    ggml_v2_graph_compute(ctx->ctx, ctx->graph);

    for (size_t i = 0; i < size_t(n_layer * 5); i++) {
        struct ggml_v2_tensor * part = ctx->state_parts[i];

        memcpy(state_out + i * n_embed, part->data, part->ne[0] * sizeof(float));
    }

    memcpy(logits_out, ctx->logits->data, ctx->logits->ne[0] * sizeof(float));

    return true;
}

void rwkv_v2_free(struct rwkv_v2_context * ctx) {
    ctx->model->layers.~vector();
    free(ctx->model);
    delete[] ctx->state_parts;
    ggml_v2_free(ctx->ctx);
    free(ctx->graph);
    free(ctx);
}

bool rwkv_v2_quantize_model_file(const char * model_file_path_in, const char * model_file_path_out, const char * format_name) {
    int32_t format_type = rwkv_v2_format_name_to_format_type(format_name);

    RWKV_V2_ASSERT_FALSE(format_type != -1, "Unsupported format \"%s\"", format_name);

    ggml_v2_type type = FORMAT_TYPE_TO_GGML_V2_TYPE[format_type];

    RWKV_V2_ASSERT_FALSE(type != GGML_V2_TYPE_UNKNOWN, "Unsupported format \"%s\"", format_name);

    // Needed to initialize FP16 lookup table
    {
        struct ggml_v2_init_params params = { 0, NULL, false };
        struct ggml_v2_context * ctx = ggml_v2_init(params);
        ggml_v2_free(ctx);
    }

    printf("Loading model from '%s'\n", model_file_path_in);

    auto finp = std::ifstream(model_file_path_in, std::ios::binary);
    RWKV_V2_ASSERT_FALSE(finp, "Failed to open %s for reading", model_file_path_in);

    auto fout = std::ofstream(model_file_path_out, std::ios::binary);
    RWKV_V2_ASSERT_FALSE(fout, "Failed to open %s for writing", model_file_path_out);

    // Process header
    {
        uint32_t magic;
        finp.read((char *) &magic, sizeof(magic));
        RWKV_V2_ASSERT_FALSE(magic == RWKV_V2_FILE_MAGIC, "Unexpected magic value %d", magic);
        fout.write((char *) &magic, sizeof(magic));

        uint32_t format_version;
        finp.read((char *) &format_version, sizeof(format_version));
        RWKV_V2_ASSERT_FALSE(format_version == RWKV_V2_FILE_VERSION, "Unsupported file version %d", format_version);
        fout.write((char *) &format_version, sizeof(format_version));

        int32_t n_vocab;
        int32_t n_embed;
        int32_t n_layer;
        int32_t data_type;

        finp.read((char *) &n_vocab, sizeof(n_vocab));
        finp.read((char *) &n_embed, sizeof(n_embed));
        finp.read((char *) &n_layer, sizeof(n_layer));
        finp.read((char *) &data_type, sizeof(data_type));

        RWKV_V2_ASSERT_FALSE(data_type == 0 || data_type == 1, "Unsupported data type %d, only FP32 and FP16 can be quantized", data_type);

        data_type = format_type;

        fout.write((char *) &n_vocab, sizeof(n_vocab));
        fout.write((char *) &n_embed, sizeof(n_embed));
        fout.write((char *) &n_layer, sizeof(n_layer));
        fout.write((char *) &data_type, sizeof(data_type));
    }

    // Process parameters
    {
        size_t total_size_orig = 0;
        size_t total_size_new = 0;

        std::vector<float> work;

        std::vector<uint8_t>     data_u8;
        std::vector<ggml_v2_fp16_t> data_f16;
        std::vector<float>       data_f32;

        std::vector<int64_t> hist_all(1 << 4, 0);

        while (true) {
            int32_t n_dims;
            int32_t key_length;
            int32_t parameter_data_type;

            finp.read(reinterpret_cast<char *>(&n_dims), sizeof(n_dims));
            finp.read(reinterpret_cast<char *>(&key_length), sizeof(key_length));
            finp.read(reinterpret_cast<char *>(&parameter_data_type),  sizeof(parameter_data_type));

            if (finp.eof()) {
                break;
            }

            RWKV_V2_ASSERT_FALSE(parameter_data_type >= 0 && parameter_data_type < RWKV_V2_FORMAT_TYPE_COUNT, "Invalid parameter data type %d", parameter_data_type);

            ggml_v2_type parameter_ggml_v2_type = FORMAT_TYPE_TO_GGML_V2_TYPE[parameter_data_type];

            RWKV_V2_ASSERT_FALSE(parameter_ggml_v2_type != GGML_V2_TYPE_UNKNOWN, "Invalid parameter data type %d", parameter_data_type);

            int32_t nelements = 1;
            int32_t ne[2] = { 1, 1 };
            for (int i = 0; i < n_dims; ++i) {
                finp.read (reinterpret_cast<char *>(&ne[i]), sizeof(ne[i]));
                nelements *= ne[i];
            }

            std::string name(key_length, 0);
            finp.read(&name[0], key_length);

            {
                printf("%48s - [%5d, %5d], type = %6s ", name.data(), ne[0], ne[1], ggml_v2_type_name(parameter_ggml_v2_type));

                total_size_orig += (size_t) (nelements * ggml_v2_type_sizef(parameter_ggml_v2_type));
            }

            // Quantize only 2D tensors, except embedding and head matrices.
            // Embedding and head take not too much space, especially in bigger models;
            // but they significantly increase perplexity when quantized.
            bool quantize = n_dims == 2 &&
                    name != std::string("emb.weight") &&
                    name != std::string("head.weight");

            if (quantize) {
                RWKV_V2_ASSERT_FALSE(
                    parameter_data_type == 0 || parameter_data_type == 1,
                    "Unsupported parameter data type %d, only FP32 and FP16 can be quantized",
                    parameter_data_type
                );

                if (parameter_data_type == 1) {
                    data_f16.resize(nelements);
                    finp.read(reinterpret_cast<char *>(data_f16.data()), nelements * sizeof(ggml_v2_fp16_t));
                    data_f32.resize(nelements);
                    for (int i = 0; i < nelements; ++i) {
                        data_f32[i] = ggml_v2_fp16_to_fp32(data_f16[i]);
                    }
                } else {
                    data_f32.resize(nelements);
                    finp.read(reinterpret_cast<char *>(data_f32.data()), nelements * sizeof(float));
                }

                parameter_data_type = format_type;
            } else {
                const int bytes_per_element = (parameter_data_type == 0) ? sizeof(float) : sizeof(uint16_t);
                data_u8.resize(nelements * bytes_per_element);
                finp.read(reinterpret_cast<char *>(data_u8.data()), nelements * bytes_per_element);
            }

            fout.write(reinterpret_cast<char *>(&n_dims), sizeof(n_dims));
            fout.write(reinterpret_cast<char *>(&key_length), sizeof(key_length));
            fout.write(reinterpret_cast<char *>(&parameter_data_type),  sizeof(parameter_data_type));

            for (int i = 0; i < n_dims; ++i) {
                fout.write(reinterpret_cast<char *>(&ne[i]), sizeof(ne[i]));
            }

            fout.write(&name[0], key_length);

            if (quantize) {
                printf("quantizing... ");
                work.resize(nelements); // for quantization

                size_t cur_size = 0;
                // This is a histogramm of some values. If it shows single 1.0, then all 0.0, something went very wrong!
                std::vector<int64_t> hist_cur(1 << 4, 0);

                switch (type) {
                    case GGML_V2_TYPE_Q4_0:
                        cur_size = ggml_v2_quantize_q4_0_v2(data_f32.data(), work.data(), nelements, ne[0], hist_cur.data());
                        break;
                    case GGML_V2_TYPE_Q4_1:
                        cur_size = ggml_v2_quantize_q4_1_v2(data_f32.data(), work.data(), nelements, ne[0], hist_cur.data());
                        break;
                    case GGML_V2_TYPE_Q4_2:
                        cur_size = ggml_v2_quantize_q4_2_v2(data_f32.data(), work.data(), nelements, ne[0], hist_cur.data());
                        break;
                    case GGML_V2_TYPE_Q5_0:
                        cur_size = ggml_v2_quantize_q5_0_v2(data_f32.data(), work.data(), nelements, ne[0], hist_cur.data());
                        break;
                    case GGML_V2_TYPE_Q5_1:
                        cur_size = ggml_v2_quantize_q5_1_v2(data_f32.data(), work.data(), nelements, ne[0], hist_cur.data());
                        break;
                    case GGML_V2_TYPE_Q8_0:
                        cur_size = ggml_v2_quantize_q8_0_v2(data_f32.data(), work.data(), nelements, ne[0], hist_cur.data());
                        break;
                    default: {
                        fprintf(stderr, "unsupported quantization type %d\n", type);
                        return false;
                    }
                }

                fout.write(reinterpret_cast<char *>(work.data()), cur_size);
                total_size_new += cur_size;

                printf("size = %8.2f MB -> %8.2f MB | hist: ", nelements * sizeof(float) / 1024.0 / 1024.0, cur_size / 1024.0 / 1024.0);

                for (int i = 0; i < (int) hist_cur.size(); ++i) {
                    hist_all[i] += hist_cur[i];
                }

                for (int i = 0; i < (int) hist_cur.size(); ++i) {
                    printf("%5.3f ", hist_cur[i] / float(nelements));
                }

                printf("\n");
            } else {
                printf("size = %8.3f MB\n", data_u8.size() / 1024.0 / 1024.0);
                fout.write(reinterpret_cast<char *>(data_u8.data()), data_u8.size());
                total_size_new += data_u8.size();
            }
        }

        printf("original size     = %8.2f MB\n", total_size_orig / 1024.0 / 1024.0);
        printf("quantized size    = %8.2f MB\n", total_size_new / 1024.0 / 1024.0);
        printf("compression ratio = %8.2f\n", 1.0 * total_size_orig / total_size_new);

        {
            int64_t sum_all = 0;

            for (int i = 0; i < (int) hist_all.size(); ++i) {
                sum_all += hist_all[i];
            }

            printf("hist: ");

            for (int i = 0; i < (int) hist_all.size(); ++i) {
                printf("%5.3f ", hist_all[i] / float(sum_all));
            }

            printf("\n");
        }
    }

    finp.close();
    fout.close();

    return true;
}

const char * rwkv_v2_get_system_info_string(void) {
    static std::string s;

    s  = "";
    s += "AVX = "       + std::to_string(ggml_v2_cpu_has_avx())       + " | ";
    s += "AVX2 = "      + std::to_string(ggml_v2_cpu_has_avx2())      + " | ";
    s += "AVX512 = "    + std::to_string(ggml_v2_cpu_has_avx512())    + " | ";
    s += "FMA = "       + std::to_string(ggml_v2_cpu_has_fma())       + " | ";
    s += "NEON = "      + std::to_string(ggml_v2_cpu_has_neon())      + " | ";
    s += "ARM_FMA = "   + std::to_string(ggml_v2_cpu_has_arm_fma())   + " | ";
    s += "F16C = "      + std::to_string(ggml_v2_cpu_has_f16c())      + " | ";
    s += "FP16_VA = "   + std::to_string(ggml_v2_cpu_has_fp16_va())   + " | ";
    s += "WASM_SIMD = " + std::to_string(ggml_v2_cpu_has_wasm_simd()) + " | ";
    s += "BLAS = "      + std::to_string(ggml_v2_cpu_has_blas())      + " | ";
    s += "SSE3 = "      + std::to_string(ggml_v2_cpu_has_sse3())      + " | ";
    s += "VSX = "       + std::to_string(ggml_v2_cpu_has_vsx())       + " | ";

    return s.c_str();
}