File size: 6,312 Bytes
f8c5b0d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
# Convert Cerebras models to ggml format
#
# ref: https://www.cerebras.net/blog/cerebras-gpt-a-family-of-open-compute-efficient-large-language-models/
#

import sys
import struct
import json
import torch
import numpy as np
import re

from transformers import AutoModelForCausalLM

# ref: https://github.com/openai/gpt-2/blob/master/src/encoder.py
def bytes_to_unicode():
    """
    Returns list of utf-8 byte and a corresponding list of unicode strings.
    The reversible bpe codes work on unicode strings.
    This means you need a large # of unicode characters in your vocab if you want to avoid UNKs.
    When you're at something like a 10B token dataset you end up needing around 5K for decent coverage.
    This is a signficant percentage of your normal, say, 32K bpe vocab.
    To avoid that, we want lookup tables between utf-8 bytes and unicode strings.
    And avoids mapping to whitespace/control characters the bpe code barfs on.
    """
    bs = list(range(ord("!"), ord("~")+1))+list(range(ord("¡"), ord("¬")+1))+list(range(ord("®"), ord("ÿ")+1))
    cs = bs[:]
    n = 0
    for b in range(2**8):
        if b not in bs:
            bs.append(b)
            cs.append(2**8+n)
            n += 1
    cs = [chr(n) for n in cs]
    return dict(zip(bs, cs))

if len(sys.argv) < 2:
    print("Usage: convert-h5-to-ggml.py dir-model [use-f32]\n")
    sys.exit(1)

# output in the same directory as the model
dir_model = sys.argv[1]
fname_out = sys.argv[1] + "/ggml-model-f16.bin"

with open(dir_model + "/vocab.json", "r", encoding="utf-8") as f:
    encoder = json.load(f)

with open(dir_model + "/config.json", "r", encoding="utf-8") as f:
    hparams = json.load(f)

# use 16-bit or 32-bit floats
use_f16 = True
if len(sys.argv) > 2:
    use_f16 = False
    fname_out = sys.argv[1] + "/ggml-model-f32.bin"

model = AutoModelForCausalLM.from_pretrained(dir_model, low_cpu_mem_usage=True)
#print (model)

list_vars = model.state_dict()
#print (list_vars)

print(hparams)

fout = open(fname_out, "wb")

fout.write(struct.pack("i", 0x67676d6c)) # magic: ggml in hex
fout.write(struct.pack("i", hparams["vocab_size"]))
fout.write(struct.pack("i", hparams["n_positions"]))
fout.write(struct.pack("i", hparams["n_embd"]))
fout.write(struct.pack("i", hparams["n_head"]))
fout.write(struct.pack("i", hparams["n_layer"]))
fout.write(struct.pack("i", use_f16))

byte_encoder = bytes_to_unicode()
byte_decoder = {v:k for k, v in byte_encoder.items()}

fout.write(struct.pack("i", len(encoder)))

for key in encoder:
    text = bytearray([byte_decoder[c] for c in key])
    fout.write(struct.pack("i", len(text)))
    fout.write(text)

for name in list_vars.keys():
    data = list_vars[name].squeeze().numpy()
    print("Processing variable: " + name + " with shape: ", data.shape)

    # rename headers to keep compatibility
    if name == "transformer.ln_f.weight":
        name = "model/ln_f/g"
    elif name == "transformer.ln_f.bias":
        name = "model/ln_f/b"
    elif name == "transformer.wte.weight":
        name = "model/wte"
    elif name == "transformer.wpe.weight":
        name = "model/wpe"
    elif name == "lm_head.weight":
        name = "model/lm_head"
    elif re.match(r"transformer.h\.\d+\.ln_1\.weight", name):
        i = re.findall("\d+", name)[0]
        name = f"model/h{i}/ln_1/g"
    elif re.match(r"transformer.h\.\d+\.ln_1\.bias", name):
        i = re.findall("\d+", name)[0]
        name = f"model/h{i}/ln_1/b"
    elif re.match(r"transformer.h\.\d+\.attn\.c_attn\.weight", name):
        i = re.findall("\d+", name)[0]
        name = f"model/h{i}/attn/c_attn/w"
    elif re.match(r"transformer.h\.\d+\.attn\.c_attn\.bias", name):
        i = re.findall("\d+", name)[0]
        name = f"model/h{i}/attn/c_attn/b"
    elif re.match(r"transformer.h\.\d+\.attn\.c_proj\.weight", name):
        i = re.findall("\d+", name)[0]
        name = f"model/h{i}/attn/c_proj/w"
    elif re.match(r"transformer.h.\d+.attn.c_proj.bias", name):
        i = re.findall("\d+", name)[0]
        name = f"model/h{i}/attn/c_proj/b"
    elif re.match(r"transformer.h.\d+.ln_2.weight", name):
        i = re.findall("\d+", name)[0]
        name = f"model/h{i}/ln_2/g"
    elif re.match(r"transformer.h.\d+.ln_2.bias", name):
        i = re.findall("\d+", name)[0]
        name = f"model/h{i}/ln_2/b"
    elif re.match(r"transformer.h.\d+.mlp.c_fc.weight", name):
        i = re.findall("\d+", name)[0]
        name = f"model/h{i}/mlp/c_fc/w"
    elif re.match(r"transformer.h.\d+.mlp.c_fc.bias", name):
        i = re.findall("\d+", name)[0]
        name = f"model/h{i}/mlp/c_fc/b"
    elif re.match(r"transformer.h.\d+.mlp.c_proj.weight", name):
        i = re.findall("\d+", name)[0]
        name = f"model/h{i}/mlp/c_proj/w"
    elif re.match(r"transformer.h.\d+.mlp.c_proj.bias", name):
        i = re.findall("\d+", name)[0]
        name = f"model/h{i}/mlp/c_proj/b"
    else:
        print("Unrecognized variable name. %s", name)

    # we don't need these
    if name.endswith("attn.masked_bias") or name.endswith(".attn.bias"):
        print("  Skipping variable: " + name)
        continue

    n_dims = len(data.shape);

    # ftype == 0 -> float32, ftype == 1 -> float16
    ftype = 0;
    if use_f16:
        if (name == "model/wte" or name == "model/lm_head" or name[-2:] == "/g" or name[-2:] == "/w") and n_dims == 2:
            print("  Converting to float16")
            data = data.astype(np.float16)
            ftype = 1
        else:
            print("  Converting to float32")
            data = data.astype(np.float32)
            ftype = 0

    # for efficiency - transpose the projection matrices
    # "model/h.*/attn/c_attn/w"
    # "model/h.*/attn/c_proj/w"
    # "model/h.*/mlp/c_fc/w"
    # "model/h.*/mlp/c_proj/w"
    if name[-14:] == "/attn/c_attn/w" or \
       name[-14:] == "/attn/c_proj/w" or \
       name[-11:] == "/mlp/c_fc/w" or \
       name[-13:] == "/mlp/c_proj/w":
        print("  Transposing")
        data = data.transpose()

    # header
    str = name.encode('utf-8')
    fout.write(struct.pack("iii", n_dims, len(str), ftype))
    for i in range(n_dims):
        fout.write(struct.pack("i", data.shape[n_dims - 1 - i]))
    fout.write(str);

    # data
    data.tofile(fout)

fout.close()

print("Done. Output file: " + fname_out)
print("")