File size: 4,721 Bytes
f8c5b0d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
import sys
import struct
import json
import numpy as np
from transformers import AutoModelForCausalLM, AutoTokenizer
import sentencepiece.sentencepiece_model_pb2 as model

# ref: https://github.com/openai/gpt-2/blob/master/src/encoder.py
def bytes_to_unicode():

    """
    Returns list of utf-8 byte and a corresponding list of unicode strings.
    The reversible bpe codes work on unicode strings.
    This means you need a large # of unicode characters in your vocab if you want to avoid UNKs.
    When you're at something like a 10B token dataset you end up needing around 5K for decent coverage.
    This is a signficant percentage of your normal, say, 32K bpe vocab.
    To avoid that, we want lookup tables between utf-8 bytes and unicode strings.
    And avoids mapping to whitespace/control characters the bpe code barfs on.
    """
    bs = list(range(ord("!"), ord("~")+1))+list(range(ord("¡"), ord("¬")+1))+list(range(ord("®"), ord("ÿ")+1))
    cs = bs[:]
    n = 0
    for b in range(2**8):
        if b not in bs:
            bs.append(b)
            cs.append(2**8+n)
            n += 1

    cs = [chr(n) for n in cs]

    return dict(zip(bs, cs))

if len(sys.argv) < 3:
    print("Usage: convert-h5-to-ggml.py dir-model [use-f32]\n")
    print("  ftype == 0 -> float32")
    print("  ftype == 1 -> float16")
    sys.exit(1)


# output in the same directory as the model
dir_model = sys.argv[1]
fname_out = sys.argv[1] + "/ggml-model.bin"


with open(dir_model + "/config.json", "r", encoding="utf-8") as f:
    hparams = json.load(f)

# possible data types
#   ftype == 0 -> float32
#   ftype == 1 -> float16
#
# map from ftype to string
ftype_str = ["f32", "f16"]

ftype = 1
if len(sys.argv) > 2:
    ftype = int(sys.argv[2])
    if ftype < 0 or ftype > 1:
        print("Invalid ftype: " + str(ftype))
        sys.exit(1)
    fname_out = sys.argv[1] + "/ggml-model-" + ftype_str[ftype] + ".bin"


tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(
    dir_model, low_cpu_mem_usage=True, trust_remote_code=True
)
# print (model)

# print(tokenizer.encode('I believe the meaning of life is'))

list_vars = model.state_dict()
for name in list_vars.keys():
    print(name, list_vars[name].shape, list_vars[name].dtype)

fout = open(fname_out, "wb")

print(hparams)

fout.write(struct.pack("i", 0x67676D6C))  # magic: ggml in hex
fout.write(struct.pack("i", hparams["d_model"]))
fout.write(struct.pack("i", hparams["max_seq_len"]))
fout.write(struct.pack("i", hparams["n_heads"]))
fout.write(struct.pack("i", hparams["n_layers"]))
fout.write(struct.pack("i", hparams["vocab_size"]))
fout.write(struct.pack("f", hparams["attn_config"]["alibi_bias_max"]))
fout.write(struct.pack("f", hparams["attn_config"]["clip_qkv"] or 0.0))
fout.write(struct.pack("i", ftype))

vocab_size = hparams["vocab_size"]

encoder = tokenizer.vocab
# Add added_tokens (special tokens) to the encoder
encoder.update(tokenizer.get_added_vocab())

byte_encoder = bytes_to_unicode()
byte_decoder = {v:k for k, v in byte_encoder.items()}

counter = 0
# sort by value
for key in sorted(encoder, key=encoder.get):
    # workaround for key error when c not found
    text=""
    for c in key:
        if c not in byte_decoder:
            text += c
        else:
            text += chr(byte_decoder[c] )
    text = bytearray( text, encoding="utf-8" )
    fout.write(struct.pack("i", len(text)))
    fout.write(text)
    counter += 1

# Repeat last token until vocab_size
while counter < vocab_size:
    fout.write(struct.pack("i", len(text)))
    fout.write(text)
    counter += 1

# assert counter == config.vocab_size

for name in list_vars.keys():
    data = list_vars[name].squeeze().numpy()
    print("Processing variable: " + name + " with shape: ", data.shape)

    n_dims = len(data.shape)

    # ftype == 0 -> float32, ftype == 1 -> float16
    ftype_cur = 0
    if ftype != 0:
        if name[-7:] == ".weight" and n_dims == 2:
            print("  Converting to float16")
            data = data.astype(np.float16)
            ftype_cur = 1
        else:
            print("  Converting to float32")
            data = data.astype(np.float32)
            ftype_cur = 0
    else:
        if data.dtype != np.float32:
            print("  Converting to float32")
            data = data.astype(np.float32)
            ftype_cur = 0

    # header
    str = name.encode("utf-8")
    fout.write(struct.pack("iii", n_dims, len(str), ftype_cur))
    for i in range(n_dims):
        fout.write(struct.pack("i", data.shape[n_dims - 1 - i]))
    fout.write(str)

    # data
    data.tofile(fout)

fout.close()

print("Done. Output file: " + fname_out)
print("")