Spaces:
Build error
Build error
float frand() { | |
return (float)rand()/(float)RAND_MAX; | |
} | |
struct random_normal_distribution { | |
std::mt19937 gen; | |
std::normal_distribution<float> nd; | |
float min; | |
float max; | |
}; | |
void init_random_normal_distribution(struct random_normal_distribution * rnd, int seed, float mean, float std, float min, float max) { | |
rnd->gen = std::mt19937(seed); | |
rnd->nd = std::normal_distribution<float>{mean, std}; | |
rnd->min = min; | |
rnd->max = max; | |
} | |
float frand_normal(struct random_normal_distribution * rnd) { | |
const float r = rnd->nd(rnd->gen); | |
return ((r < rnd->min) ? (rnd->min) : (r > rnd->max) ? (rnd->max) : r); | |
} | |
struct ggml_tensor * randomize_tensor( | |
struct ggml_tensor * tensor, | |
int ndims, | |
const int64_t ne[], | |
float fmin, | |
float fmax) { | |
switch (ndims) { | |
case 1: | |
for (int i0 = 0; i0 < ne[0]; i0++) { | |
((float *)tensor->data)[i0] = frand()*(fmax - fmin) + fmin; | |
} | |
break; | |
case 2: | |
for (int i1 = 0; i1 < ne[1]; i1++) { | |
for (int i0 = 0; i0 < ne[0]; i0++) { | |
((float *)tensor->data)[i1*ne[0] + i0] = frand()*(fmax - fmin) + fmin; | |
} | |
} | |
break; | |
case 3: | |
for (int i2 = 0; i2 < ne[2]; i2++) { | |
for (int i1 = 0; i1 < ne[1]; i1++) { | |
for (int i0 = 0; i0 < ne[0]; i0++) { | |
((float *)tensor->data)[i2*ne[1]*ne[0] + i1*ne[0] + i0] = frand()*(fmax - fmin) + fmin; | |
} | |
} | |
} | |
break; | |
case 4: | |
for (int i3 = 0; i3 < ne[3]; i3++) { | |
for (int i2 = 0; i2 < ne[2]; i2++) { | |
for (int i1 = 0; i1 < ne[1]; i1++) { | |
for (int i0 = 0; i0 < ne[0]; i0++) { | |
((float *)tensor->data)[i3*ne[2]*ne[1]*ne[0] + i2*ne[1]*ne[0] + i1*ne[0] + i0] = frand()*(fmax - fmin) + fmin; | |
} | |
} | |
} | |
} | |
break; | |
default: | |
assert(false); | |
}; | |
return tensor; | |
} | |
struct ggml_tensor * randomize_tensor_normal( | |
struct ggml_tensor * tensor, | |
int ndims, | |
const int64_t ne[], | |
struct random_normal_distribution * rnd) { | |
float scale = 1.0; // xavier | |
switch (ndims) { | |
case 1: | |
scale /= sqrtf(ne[0]); | |
for (int i0 = 0; i0 < ne[0]; i0++) { | |
((float *)tensor->data)[i0] = scale * frand_normal(rnd); | |
} | |
break; | |
case 2: | |
scale /= sqrtf(ne[0]+ne[1]); | |
for (int i1 = 0; i1 < ne[1]; i1++) { | |
for (int i0 = 0; i0 < ne[0]; i0++) { | |
((float *)tensor->data)[i1*ne[0] + i0] = scale * frand_normal(rnd); | |
} | |
} | |
break; | |
case 3: | |
scale /= sqrtf(ne[0]+ne[1]); | |
for (int i2 = 0; i2 < ne[2]; i2++) { | |
for (int i1 = 0; i1 < ne[1]; i1++) { | |
for (int i0 = 0; i0 < ne[0]; i0++) { | |
((float *)tensor->data)[i2*ne[1]*ne[0] + i1*ne[0] + i0] = scale * frand_normal(rnd); | |
} | |
} | |
} | |
break; | |
case 4: | |
scale /= sqrtf(ne[0]+ne[1]); | |
for (int i3 = 0; i3 < ne[3]; i3++) { | |
for (int i2 = 0; i2 < ne[2]; i2++) { | |
for (int i1 = 0; i1 < ne[1]; i1++) { | |
for (int i0 = 0; i0 < ne[0]; i0++) { | |
((float *)tensor->data)[i3*ne[2]*ne[1]*ne[0] + i2*ne[1]*ne[0] + i1*ne[0] + i0] = scale * frand_normal(rnd); | |
} | |
} | |
} | |
} | |
break; | |
default: | |
assert(false); | |
}; | |
return tensor; | |
} | |
struct llama_hparams { | |
uint32_t n_vocab = 32000; | |
uint32_t n_ctx = 512; // this is provided as user input? | |
uint32_t n_embd = 4096; | |
uint32_t n_mult = 4; | |
uint32_t n_head = 32; | |
uint32_t n_layer = 32; | |
uint32_t n_rot = 64; | |
bool operator!=(const llama_hparams & other) const { | |
return memcmp(this, &other, sizeof(llama_hparams)); | |
} | |
}; | |
uint32_t get_n_ff(const struct llama_hparams* hparams) { | |
const uint32_t n_ff = ((2*(4*hparams->n_embd)/3 + hparams->n_mult - 1)/hparams->n_mult)*hparams->n_mult; | |
return n_ff; | |
} | |
struct llama_hparams_lora { | |
uint32_t n_vocab = 32000; | |
uint32_t n_ctx = 512; // this is provided as user input? | |
uint32_t n_embd = 4096; | |
uint32_t n_mult = 4; | |
uint32_t n_head = 32; | |
uint32_t n_layer = 32; | |
uint32_t n_rot = 64; | |
uint32_t n_lora = 64; | |
bool operator!=(const llama_hparams_lora & other) const { | |
return memcmp(this, &other, sizeof(llama_hparams_lora)) != 0; | |
} | |
}; | |
struct llama_layer { | |
// normalization | |
struct ggml_tensor * attention_norm; | |
// attention | |
struct ggml_tensor * wq; | |
struct ggml_tensor * wk; | |
struct ggml_tensor * wv; | |
struct ggml_tensor * wo; | |
// normalization | |
struct ggml_tensor * ffn_norm; | |
// ff | |
struct ggml_tensor * w1; | |
struct ggml_tensor * w2; | |
struct ggml_tensor * w3; | |
}; | |
struct llama_layer_lora { | |
// normalization | |
struct ggml_tensor * attention_norm; | |
// attention | |
struct ggml_tensor * wqa; | |
struct ggml_tensor * wqb; | |
struct ggml_tensor * wka; | |
struct ggml_tensor * wkb; | |
struct ggml_tensor * wva; | |
struct ggml_tensor * wvb; | |
struct ggml_tensor * woa; | |
struct ggml_tensor * wob; | |
// normalization | |
struct ggml_tensor * ffn_norm; | |
// ff | |
struct ggml_tensor * w1; | |
struct ggml_tensor * w2; | |
struct ggml_tensor * w3; | |
}; | |
struct llama_kv_cache { | |
struct ggml_context * ctx = NULL; | |
struct ggml_tensor * k; | |
struct ggml_tensor * v; | |
// llama_ctx_buffer buf; | |
int n; // number of tokens currently in the cache | |
}; | |
struct llama_model { | |
struct ggml_context * ctx = NULL; | |
llama_hparams hparams; | |
struct ggml_tensor * tok_embeddings; | |
struct ggml_tensor * norm; | |
struct ggml_tensor * output; | |
std::vector<llama_layer> layers; | |
}; | |
struct llama_model_lora { | |
struct ggml_context * ctx = NULL; | |
llama_hparams_lora hparams; | |
struct ggml_tensor * tok_embeddings; | |
struct ggml_tensor * norm; | |
struct ggml_tensor * outputa; | |
struct ggml_tensor * outputb; | |
std::vector<llama_layer_lora> layers; | |
}; | |
void init_model(struct llama_model * model) { | |
const auto & hparams = model->hparams; | |
const uint32_t n_embd = hparams.n_embd; | |
const uint32_t n_layer = hparams.n_layer; | |
const uint32_t n_vocab = hparams.n_vocab; | |
const uint32_t n_ff = get_n_ff(&hparams); | |
struct ggml_context * ctx = model->ctx; | |
model->tok_embeddings = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_vocab); // ("tok_embeddings.weight", {n_embd, n_vocab}); | |
model->norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd); // ("norm.weight", {n_embd}); | |
model->output = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_vocab); // ("output.weight", {n_embd, n_vocab}); | |
model->layers.resize(n_layer); | |
for (uint32_t i = 0; i < n_layer; ++i) { | |
auto & layer = model->layers[i]; | |
// std::string layers_i = "layers." + std::to_string(i); | |
layer.attention_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd); // (layers_i + ".attention_norm.weight", {n_embd}); | |
layer.wq = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd); // (layers_i + ".attention.wq.weight", {n_embd, n_embd}); | |
layer.wk = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd); // (layers_i + ".attention.wk.weight", {n_embd, n_embd}); | |
layer.wv = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd); // (layers_i + ".attention.wv.weight", {n_embd, n_embd}); | |
layer.wo = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd); // (layers_i + ".attention.wo.weight", {n_embd, n_embd}); | |
layer.ffn_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd); // (layers_i + ".ffn_norm.weight", {n_embd}); | |
layer.w1 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_ff); // (layers_i + ".feed_forward.w1.weight", {n_embd, n_ff}); | |
layer.w2 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_ff, n_embd); // (layers_i + ".feed_forward.w2.weight", { n_ff, n_embd}); | |
layer.w3 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_ff); // (layers_i + ".feed_forward.w3.weight", {n_embd, n_ff}); | |
} | |
} | |
void init_model_lora(struct llama_model_lora * model) { | |
const auto & hparams = model->hparams; | |
const uint32_t n_embd = hparams.n_embd; | |
const uint32_t n_mult = hparams.n_mult; | |
const uint32_t n_layer = hparams.n_layer; | |
const uint32_t n_vocab = hparams.n_vocab; | |
const uint32_t n_lora = hparams.n_lora; | |
const uint32_t n_ff = ((2*(4*n_embd)/3 + n_mult - 1)/n_mult)*n_mult; | |
struct ggml_context * ctx = model->ctx; | |
model->tok_embeddings = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_vocab); // ("tok_embeddings.weight", {n_embd, n_vocab}); | |
model->norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd); // ("norm.weight", {n_embd}); | |
model->outputa = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_lora, n_vocab); // ("output.weight", {n_embd, n_vocab}); | |
model->outputb = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_lora); // ("output.weight", {n_embd, n_vocab}); | |
model->layers.resize(n_layer); | |
for (uint32_t i = 0; i < n_layer; ++i) { | |
auto & layer = model->layers[i]; | |
// std::string layers_i = "layers." + std::to_string(i); | |
layer.attention_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd); // (layers_i + ".attention_norm.weight", {n_embd}); | |
layer.wqa = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_lora, n_embd); // (layers_i + ".attention.wq.weight", {n_embd, n_embd}); | |
layer.wqb = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_lora); // (layers_i + ".attention.wq.weight", {n_embd, n_embd}); | |
layer.wka = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_lora, n_embd); // (layers_i + ".attention.wk.weight", {n_embd, n_embd}); | |
layer.wkb = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_lora); // (layers_i + ".attention.wk.weight", {n_embd, n_embd}); | |
layer.wva = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_lora, n_embd); // (layers_i + ".attention.wv.weight", {n_embd, n_embd}); | |
layer.wvb = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_lora); // (layers_i + ".attention.wv.weight", {n_embd, n_embd}); | |
layer.woa = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_lora, n_embd); // (layers_i + ".attention.wo.weight", {n_embd, n_embd}); | |
layer.wob = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_lora); // (layers_i + ".attention.wo.weight", {n_embd, n_embd}); | |
layer.ffn_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd); // (layers_i + ".ffn_norm.weight", {n_embd}); | |
layer.w1 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_ff); // (layers_i + ".feed_forward.w1.weight", {n_embd, n_ff}); | |
layer.w2 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_ff, n_embd); // (layers_i + ".feed_forward.w2.weight", { n_ff, n_embd}); | |
layer.w3 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_ff); // (layers_i + ".feed_forward.w3.weight", {n_embd, n_ff}); | |
} | |
} | |
void set_param_model(struct llama_model * model) { | |
const auto& hparams = model->hparams; | |
const uint32_t n_layer = hparams.n_layer; | |
struct ggml_context* ctx = model->ctx; | |
ggml_set_param(ctx, model->tok_embeddings); | |
ggml_set_param(ctx, model->norm); | |
ggml_set_param(ctx, model->output); | |
for (uint32_t i = 0; i < n_layer; ++i) { | |
auto & layer = model->layers[i]; | |
ggml_set_param(ctx, layer.attention_norm); | |
ggml_set_param(ctx, layer.wq); | |
ggml_set_param(ctx, layer.wk); | |
ggml_set_param(ctx, layer.wv); | |
ggml_set_param(ctx, layer.wo); | |
ggml_set_param(ctx, layer.ffn_norm); | |
ggml_set_param(ctx, layer.w1); | |
ggml_set_param(ctx, layer.w2); | |
ggml_set_param(ctx, layer.w3); | |
} | |
} | |
void set_param_model_lora(struct llama_model_lora * model) { | |
const auto& hparams = model->hparams; | |
const uint32_t n_layer = hparams.n_layer; | |
struct ggml_context* ctx = model->ctx; | |
ggml_set_param(ctx, model->tok_embeddings); | |
ggml_set_param(ctx, model->norm); | |
ggml_set_param(ctx, model->outputa); | |
ggml_set_param(ctx, model->outputb); | |
for (uint32_t i = 0; i < n_layer; ++i) { | |
auto & layer = model->layers[i]; | |
ggml_set_param(ctx, layer.attention_norm); | |
ggml_set_param(ctx, layer.wqa); | |
ggml_set_param(ctx, layer.wqb); | |
ggml_set_param(ctx, layer.wka); | |
ggml_set_param(ctx, layer.wkb); | |
ggml_set_param(ctx, layer.wva); | |
ggml_set_param(ctx, layer.wvb); | |
ggml_set_param(ctx, layer.woa); | |
ggml_set_param(ctx, layer.wob); | |
ggml_set_param(ctx, layer.ffn_norm); | |
ggml_set_param(ctx, layer.w1); | |
ggml_set_param(ctx, layer.w2); | |
ggml_set_param(ctx, layer.w3); | |
} | |
} | |
void randomize_model(struct llama_model * model, int seed, float mean, float std, float min, float max) { | |
const auto & hparams = model->hparams; | |
const uint32_t n_layer = hparams.n_layer; | |
struct random_normal_distribution rnd; | |
init_random_normal_distribution(&rnd, seed, mean, std, min, max); | |
randomize_tensor_normal(model->tok_embeddings, model->tok_embeddings->n_dims, model->tok_embeddings->ne, &rnd); | |
randomize_tensor_normal(model->norm, model->norm->n_dims, model->norm->ne, &rnd); | |
randomize_tensor_normal(model->output, model->output->n_dims, model->output->ne, &rnd); | |
for (uint32_t i = 0; i < n_layer; ++i) { | |
auto & layer = model->layers[i]; | |
randomize_tensor_normal(layer.attention_norm, layer.attention_norm->n_dims, layer.attention_norm->ne, &rnd); | |
randomize_tensor_normal(layer.wq, layer.wq->n_dims, layer.wq->ne, &rnd); | |
randomize_tensor_normal(layer.wk, layer.wk->n_dims, layer.wk->ne, &rnd); | |
randomize_tensor_normal(layer.wv, layer.wv->n_dims, layer.wv->ne, &rnd); | |
randomize_tensor_normal(layer.wo, layer.wo->n_dims, layer.wo->ne, &rnd); | |
randomize_tensor_normal(layer.ffn_norm, layer.ffn_norm->n_dims, layer.ffn_norm->ne, &rnd); | |
randomize_tensor_normal(layer.w1, layer.w1->n_dims, layer.w1->ne, &rnd); | |
randomize_tensor_normal(layer.w2, layer.w2->n_dims, layer.w2->ne, &rnd); | |
randomize_tensor_normal(layer.w3, layer.w3->n_dims, layer.w3->ne, &rnd); | |
} | |
} | |
void randomize_model_lora(struct llama_model_lora * model, int seed, float mean, float std, float min, float max) { | |
const auto & hparams = model->hparams; | |
const uint32_t n_layer = hparams.n_layer; | |
struct random_normal_distribution rnd; | |
init_random_normal_distribution(&rnd, seed, mean, std, min, max); | |
randomize_tensor_normal(model->tok_embeddings, model->tok_embeddings->n_dims, model->tok_embeddings->ne, &rnd); | |
randomize_tensor_normal(model->norm, model->norm->n_dims, model->norm->ne, &rnd); | |
randomize_tensor_normal(model->outputa, model->outputa->n_dims, model->outputa->ne, &rnd); | |
randomize_tensor_normal(model->outputb, model->outputb->n_dims, model->outputb->ne, &rnd); | |
for (uint32_t i = 0; i < n_layer; ++i) { | |
auto & layer = model->layers[i]; | |
randomize_tensor_normal(layer.attention_norm, layer.attention_norm->n_dims, layer.attention_norm->ne, &rnd); | |
randomize_tensor_normal(layer.wqa, layer.wqa->n_dims, layer.wqa->ne, &rnd); | |
randomize_tensor_normal(layer.wqb, layer.wqb->n_dims, layer.wqb->ne, &rnd); | |
randomize_tensor_normal(layer.wka, layer.wka->n_dims, layer.wka->ne, &rnd); | |
randomize_tensor_normal(layer.wkb, layer.wkb->n_dims, layer.wkb->ne, &rnd); | |
randomize_tensor_normal(layer.wva, layer.wva->n_dims, layer.wva->ne, &rnd); | |
randomize_tensor_normal(layer.wvb, layer.wvb->n_dims, layer.wvb->ne, &rnd); | |
randomize_tensor_normal(layer.woa, layer.woa->n_dims, layer.woa->ne, &rnd); | |
randomize_tensor_normal(layer.wob, layer.wob->n_dims, layer.wob->ne, &rnd); | |
randomize_tensor_normal(layer.ffn_norm, layer.ffn_norm->n_dims, layer.ffn_norm->ne, &rnd); | |
randomize_tensor_normal(layer.w1, layer.w1->n_dims, layer.w1->ne, &rnd); | |
randomize_tensor_normal(layer.w2, layer.w2->n_dims, layer.w2->ne, &rnd); | |
randomize_tensor_normal(layer.w3, layer.w3->n_dims, layer.w3->ne, &rnd); | |
} | |
} | |
bool init_kv_cache(struct llama_kv_cache* cache, struct llama_model * model, int n_batch) { | |
const auto & hparams = model->hparams; | |
const uint32_t n_ctx = hparams.n_ctx; | |
const uint32_t n_embd = hparams.n_embd; | |
const uint32_t n_layer = hparams.n_layer; | |
const int64_t n_mem = n_layer*n_ctx*n_batch; | |
const int64_t n_elements = n_embd*n_mem; | |
// cache.buf.resize(2u*n_elements*ggml_type_size(wtype) + 2u*MB); | |
// struct ggml_init_params params; | |
// params.mem_size = cache.buf.size; | |
// params.mem_buffer = cache.buf.addr; | |
// params.no_alloc = false; | |
if (!cache->ctx) { | |
struct ggml_init_params params; | |
params.mem_size = 2u*n_elements*ggml_type_size(GGML_TYPE_F32) + 2u*1024*1024; | |
params.mem_buffer = NULL; | |
params.no_alloc = false; | |
cache->ctx = ggml_init(params); | |
if (!cache->ctx) { | |
fprintf(stderr, "%s: failed to allocate memory for kv cache\n", __func__); | |
return false; | |
} | |
} | |
cache->k = ggml_new_tensor_1d(cache->ctx, GGML_TYPE_F32, n_elements); | |
cache->v = ggml_new_tensor_1d(cache->ctx, GGML_TYPE_F32, n_elements); | |
return true; | |
} | |
bool init_kv_cache_lora(struct llama_kv_cache* cache, struct llama_model_lora * model, int n_batch) { | |
const auto & hparams = model->hparams; | |
const uint32_t n_ctx = hparams.n_ctx; | |
const uint32_t n_embd = hparams.n_embd; | |
const uint32_t n_layer = hparams.n_layer; | |
const int64_t n_mem = n_layer*n_ctx*n_batch; | |
const int64_t n_elements = n_embd*n_mem; | |
// cache.buf.resize(2u*n_elements*ggml_type_size(wtype) + 2u*MB); | |
// struct ggml_init_params params; | |
// params.mem_size = cache.buf.size; | |
// params.mem_buffer = cache.buf.addr; | |
// params.no_alloc = false; | |
if (!cache->ctx) { | |
struct ggml_init_params params; | |
params.mem_size = 2u*n_elements*ggml_type_size(GGML_TYPE_F32) + 2u*1024*1024; | |
params.mem_buffer = NULL; | |
params.no_alloc = false; | |
cache->ctx = ggml_init(params); | |
if (!cache->ctx) { | |
fprintf(stderr, "%s: failed to allocate memory for kv cache\n", __func__); | |
return false; | |
} | |
} | |
cache->k = ggml_new_tensor_1d(cache->ctx, GGML_TYPE_F32, n_elements); | |
cache->v = ggml_new_tensor_1d(cache->ctx, GGML_TYPE_F32, n_elements); | |
return true; | |
} | |
struct ggml_tensor * forward( | |
struct llama_model * model, | |
struct llama_kv_cache * cache, | |
struct ggml_context * ctx0, | |
struct ggml_cgraph * gf, | |
struct ggml_tensor * tokens_input, | |
const int n_tokens, | |
const int n_past) { | |
const int N = n_tokens; | |
struct llama_kv_cache& kv_self = *cache; | |
const auto & hparams = model->hparams; | |
const int n_ctx = hparams.n_ctx; | |
const int n_embd = hparams.n_embd; | |
const int n_layer = hparams.n_layer; | |
const int n_head = hparams.n_head; | |
const int n_rot = hparams.n_rot; | |
struct ggml_tensor * tokens = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N); | |
memcpy(tokens->data, tokens_input->data, N*ggml_element_size(tokens)); | |
struct ggml_tensor * kc = kv_self.k; | |
struct ggml_tensor * vc = kv_self.v; | |
// inpL shape [n_embd,N,1,1] | |
struct ggml_tensor * inpL = ggml_get_rows(ctx0, model->tok_embeddings, tokens); | |
for (int il = 0; il < n_layer; ++il) { | |
struct ggml_tensor * inpSA = inpL; | |
struct ggml_tensor * cur; | |
// lctx.use_buf(ctx0, 0); | |
// norm | |
{ | |
// cur shape [n_embd,N,1,1] | |
cur = ggml_rms_norm(ctx0, inpL); | |
// cur = attention_norm*cur | |
cur = ggml_mul(ctx0, | |
ggml_repeat(ctx0, model->layers[il].attention_norm, cur), | |
cur); | |
} | |
// self-attention | |
{ | |
// compute Q and K and RoPE them | |
// wq shape [n_embd, n_embd, 1, 1] | |
// wk shape [n_embd, n_embd, 1, 1] | |
// Qcur shape [n_embd/n_head, n_head, N, 1] | |
// Kcur shape [n_embd/n_head, n_head, N, 1] | |
struct ggml_tensor * Qcur = ggml_rope(ctx0, ggml_reshape_3d(ctx0, ggml_mul_mat(ctx0, model->layers[il].wq, cur), n_embd/n_head, n_head, N), n_past, n_rot, 0); | |
struct ggml_tensor * Kcur = ggml_rope(ctx0, ggml_reshape_3d(ctx0, ggml_mul_mat(ctx0, model->layers[il].wk, cur), n_embd/n_head, n_head, N), n_past, n_rot, 0); | |
// store key and value to memory | |
{ | |
// compute the transposed [N, n_embd] V matrix | |
// wv shape [n_embd, n_embd, 1, 1] | |
// Vcur shape [n_embd, N, 1, 1] | |
struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_transpose(ctx0, ggml_reshape_2d(ctx0, ggml_mul_mat(ctx0, model->layers[il].wv, cur), n_embd, N))); | |
// kv_self.k shape [n_embd * n_ctx * n_layer, 1] | |
// kv_self.v shape [n_embd * n_ctx * n_layer, 1] | |
// k shape [n_embd * N, 1] == kv_self.k[:,n_past:n_past+N,il,0] | |
// v shape [N, n_embd, 1, 1] == kv_self.v[:,n_past:n_past+N,il,0] | |
/* { | |
struct ggml_tensor * k = ggml_view_1d(ctx0, kv_self.k, N*n_embd, (ggml_element_size(kv_self.k)*n_embd)*(il*n_ctx + n_past)); | |
struct ggml_tensor * v = ggml_view_2d(ctx0, kv_self.v, N, n_embd, | |
( n_ctx)*ggml_element_size(kv_self.v), | |
(il*n_ctx)*ggml_element_size(kv_self.v)*n_embd + n_past*ggml_element_size(kv_self.v)); | |
// important: storing RoPE-ed version of K in the KV cache! | |
ggml_build_forward_expand(gf, ggml_cpy(ctx0, Kcur, k)); | |
ggml_build_forward_expand(gf, ggml_cpy(ctx0, Vcur, v)); | |
} //*/ | |
kc = ggml_set_1d(ctx0, kc, ggml_reshape_1d(ctx0, Kcur, n_embd*N), (ggml_element_size(kv_self.k)*n_embd)*(il*n_ctx + n_past)); | |
vc = ggml_set_2d(ctx0, vc, Vcur, ( n_ctx)*ggml_element_size(kv_self.v), | |
(il*n_ctx)*ggml_element_size(kv_self.v)*n_embd + n_past*ggml_element_size(kv_self.v)); | |
} | |
// Qcur shape [n_embd/n_head, n_head, N, 1] | |
// Q shape [n_embd/n_head, N, n_head, 1] | |
struct ggml_tensor * Q = | |
ggml_permute(ctx0, | |
Qcur, | |
0, 2, 1, 3); | |
// kv_self.k shape [n_embd * n_ctx * n_layer, 1] | |
// K shape [n_embd/n_head, n_past + N, n_head, 1] | |
struct ggml_tensor * K = | |
ggml_permute(ctx0, | |
ggml_reshape_3d(ctx0, | |
ggml_view_1d(ctx0, kc, (n_past + N)*n_embd, il*n_ctx*ggml_element_size(kc)*n_embd), | |
n_embd/n_head, n_head, n_past + N), | |
0, 2, 1, 3); | |
// K * Q | |
// KQ shape [n_past + N, N, n_head, 1] | |
struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q); | |
// KQ_scaled = KQ / sqrt(n_embd/n_head) | |
// KQ_scaled shape [n_past + N, N, n_head, 1] | |
struct ggml_tensor * KQ_scaled = | |
ggml_scale(ctx0, | |
KQ, | |
ggml_new_f32(ctx0, 1.0f/sqrtf(float(n_embd)/n_head))); | |
// KQ_masked = mask_past(KQ_scaled) | |
// KQ_masked shape [n_past + N, N, n_head, 1] | |
struct ggml_tensor * KQ_masked = ggml_diag_mask_inf(ctx0, KQ_scaled, n_past); | |
// KQ = soft_max(KQ_masked) | |
// KQ_soft_max shape [n_past + N, N, n_head, 1] | |
struct ggml_tensor * KQ_soft_max = ggml_soft_max(ctx0, KQ_masked); | |
// split cached V into n_head heads | |
//// V shape [n_past + N, n_embd/n_head, n_head, 1] | |
// V shape [n_past + N, n_embd/n_head, n_head, 1] == kv_self.v[:,:(n_past+N),il,1] | |
struct ggml_tensor * V = | |
ggml_view_3d(ctx0, vc, | |
n_past + N, n_embd/n_head, n_head, | |
n_ctx*ggml_element_size(vc), | |
n_ctx*ggml_element_size(vc)*n_embd/n_head, | |
il*n_ctx*ggml_element_size(vc)*n_embd); | |
// KQV shape [n_embd/n_head, N, n_head, 1] | |
struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ_soft_max); | |
// KQV_merged = KQV.permute(0, 2, 1, 3) | |
// KQV_merged shape [n_embd/n_head, n_head, N, 1] | |
struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3); | |
// KQV_merged shape | |
// cur = KQV_merged.contiguous().view(n_embd, N) | |
// cur shape [n_embd,N,1,1] | |
cur = ggml_reshape_2d(ctx0, ggml_cont(ctx0, KQV_merged), n_embd, N); | |
// cur = ggml_cpy(ctx0, | |
// KQV_merged, | |
// ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, N)); | |
// projection (no bias) | |
// cur shape [n_embd,N,1,1] | |
cur = ggml_mul_mat(ctx0, | |
model->layers[il].wo, | |
cur); | |
} | |
// lctx.use_buf(ctx0, 1); | |
// inpFF shape [n_embd,N,1,1] | |
struct ggml_tensor * inpFF = ggml_add(ctx0, cur, inpSA); | |
// feed-forward network | |
{ | |
// norm | |
{ | |
// cur shape [n_embd,N,1,1] | |
cur = ggml_rms_norm(ctx0, inpFF); | |
// cur = ffn_norm*cur | |
// cur shape [n_embd,N,1,1] | |
cur = ggml_mul(ctx0, | |
ggml_repeat(ctx0, model->layers[il].ffn_norm, cur), | |
cur); | |
} | |
// tmp shape [n_ff,N,1,1] | |
struct ggml_tensor * tmp = ggml_mul_mat(ctx0, | |
model->layers[il].w3, | |
cur); | |
// cur shape [n_ff,N,1,1] | |
cur = ggml_mul_mat(ctx0, | |
model->layers[il].w1, | |
cur); | |
// SILU activation | |
// cur shape [n_ff,N,1,1] | |
cur = ggml_silu(ctx0, cur); | |
// cur shape [n_ff,N,1,1] | |
cur = ggml_mul(ctx0, cur, tmp); | |
// cur shape [n_embd,N,1,1] | |
cur = ggml_mul_mat(ctx0, | |
model->layers[il].w2, | |
cur); | |
} | |
// cur shape [n_embd,N,1,1] | |
cur = ggml_add(ctx0, cur, inpFF); | |
// input for next layer | |
// inpL shape [n_embd,N,1,1] | |
inpL = cur; | |
} | |
// norm | |
{ | |
// inpL shape [n_embd,N,1,1] | |
inpL = ggml_rms_norm(ctx0, inpL); | |
// inpL = norm*inpL | |
// inpL shape [n_embd,N,1,1] | |
inpL = ggml_mul(ctx0, | |
ggml_repeat(ctx0, model->norm, inpL), | |
inpL); | |
//embeddings = inpL; | |
} | |
// lm_head | |
// inpL shape [n_vocab,N,1,1] | |
inpL = ggml_mul_mat(ctx0, model->output, inpL); | |
// run the computation | |
ggml_build_forward_expand(gf, inpL); | |
return inpL; | |
} | |
void assert_shape_1d(struct ggml_tensor * tensor, int64_t ne0) { | |
GGML_ASSERT(tensor->n_dims == 1); | |
GGML_ASSERT(tensor->ne[0] == ne0); | |
} | |
void assert_shape_2d(struct ggml_tensor * tensor, int64_t ne0, int64_t ne1) { | |
GGML_ASSERT(tensor->n_dims == 2); | |
GGML_ASSERT(tensor->ne[0] == ne0); | |
GGML_ASSERT(tensor->ne[1] == ne1); | |
} | |
void assert_shape_3d(struct ggml_tensor * tensor, int64_t ne0, int64_t ne1, int64_t ne2) { | |
GGML_ASSERT(tensor->n_dims == 3); | |
GGML_ASSERT(tensor->ne[0] == ne0); | |
GGML_ASSERT(tensor->ne[1] == ne1); | |
GGML_ASSERT(tensor->ne[2] == ne2); | |
} | |
void assert_shape_4d(struct ggml_tensor * tensor, int64_t ne0, int64_t ne1, int64_t ne2, int64_t ne3) { | |
GGML_ASSERT(tensor->n_dims == 4); | |
GGML_ASSERT(tensor->ne[0] == ne0); | |
GGML_ASSERT(tensor->ne[1] == ne1); | |
GGML_ASSERT(tensor->ne[2] == ne2); | |
GGML_ASSERT(tensor->ne[3] == ne3); | |
} | |
struct ggml_tensor * forward_batch( | |
struct llama_model * model, | |
struct llama_kv_cache * cache, | |
struct ggml_context * ctx0, | |
struct ggml_cgraph * gf, | |
struct ggml_tensor * tokens_input, | |
const int n_tokens, | |
const int n_past, | |
const int n_batch) { | |
const int N = n_tokens; | |
struct llama_kv_cache& kv_self = *cache; | |
const auto & hparams = model->hparams; | |
const int n_ctx = hparams.n_ctx; | |
const int n_vocab = hparams.n_vocab; | |
const int n_embd = hparams.n_embd; | |
const int n_layer = hparams.n_layer; | |
const int n_head = hparams.n_head; | |
const int n_rot = hparams.n_rot; | |
const int n_ff = get_n_ff(&hparams); | |
struct ggml_tensor * tokens = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N*n_batch); | |
memcpy(tokens->data, tokens_input->data, ggml_element_size(tokens)*N*n_batch); | |
struct ggml_tensor * kc = kv_self.k; | |
struct ggml_tensor * vc = kv_self.v; | |
// inpL shape [n_embd,N*n_batch,1] | |
struct ggml_tensor * inpL = ggml_get_rows(ctx0, model->tok_embeddings, tokens); | |
assert_shape_2d(inpL, n_embd, N*n_batch); | |
for (int il = 0; il < n_layer; ++il) { | |
struct ggml_tensor * inpSA = inpL; | |
struct ggml_tensor * cur; | |
// lctx.use_buf(ctx0, 0); | |
// norm | |
{ | |
// cur shape [n_embd,N*n_batch,1,1] | |
cur = ggml_rms_norm(ctx0, inpL); | |
assert_shape_2d(cur, n_embd, N*n_batch); | |
// cur = attention_norm*cur | |
cur = ggml_mul(ctx0, | |
ggml_repeat(ctx0, model->layers[il].attention_norm, cur), | |
cur); | |
assert_shape_2d(cur, n_embd, N*n_batch); | |
} | |
// self-attention | |
{ | |
// compute Q and K and RoPE them | |
// wq shape [n_embd, n_embd, 1, 1] | |
// wk shape [n_embd, n_embd, 1, 1] | |
// Qcur shape [n_embd/n_head, n_head, N, n_batch] | |
// Kcur shape [n_embd/n_head, n_head, N, n_batch] | |
struct ggml_tensor * Qcur = ggml_rope(ctx0, ggml_reshape_4d(ctx0, ggml_mul_mat(ctx0, model->layers[il].wq, cur), n_embd/n_head, n_head, N, n_batch), n_past, n_rot, 0); | |
struct ggml_tensor * Kcur = ggml_rope(ctx0, ggml_reshape_4d(ctx0, ggml_mul_mat(ctx0, model->layers[il].wk, cur), n_embd/n_head, n_head, N, n_batch), n_past, n_rot, 0); | |
assert_shape_4d(Qcur, n_embd/n_head, n_head, N, n_batch); | |
assert_shape_4d(Kcur, n_embd/n_head, n_head, N, n_batch); | |
// store key and value to memory | |
{ | |
// compute the transposed [N, n_embd] V matrix | |
// wv shape [n_embd, n_embd, 1, 1] | |
// Vcur shape [N, n_embd, n_batch, 1] | |
struct ggml_tensor * Vcur = ggml_cont(ctx0, | |
ggml_permute(ctx0, | |
ggml_reshape_3d(ctx0, | |
ggml_mul_mat(ctx0, | |
model->layers[il].wv, | |
cur), | |
n_embd, N, n_batch), | |
1, 0, 2, 3)); | |
assert_shape_3d(Vcur, N, n_embd, n_batch); | |
// kv_self.k shape [n_embd * n_ctx * n_batch * n_layer] | |
// kv_self.v shape [n_ctx * n_embd * n_batch * n_layer] | |
// k shape [n_embd * N, n_batch] == kv_self.k[:,n_past:n_past+N,:,il] | |
// v shape [N, n_embd, n_batch, 1] == kv_self.v[:,n_past:n_past+N,:,il] | |
/* { | |
struct ggml_tensor * k = ggml_view_1d(ctx0, kv_self.k, N*n_embd, (ggml_element_size(kv_self.k)*n_embd)*(il*n_ctx + n_past)); | |
struct ggml_tensor * v = ggml_view_2d(ctx0, kv_self.v, N, n_embd, | |
( n_ctx)*ggml_element_size(kv_self.v), | |
(il*n_ctx)*ggml_element_size(kv_self.v)*n_embd + n_past*ggml_element_size(kv_self.v)); | |
// important: storing RoPE-ed version of K in the KV cache! | |
ggml_build_forward_expand(gf, ggml_cpy(ctx0, Kcur, k)); | |
ggml_build_forward_expand(gf, ggml_cpy(ctx0, Vcur, v)); | |
} //*/ | |
kc = ggml_set_2d(ctx0, kc, | |
ggml_reshape_2d(ctx0, Kcur, n_embd*N, n_batch), | |
ggml_element_size(kc)*n_embd*n_ctx, | |
(ggml_element_size(kc)*n_embd)*(il*n_batch*n_ctx + n_past)); | |
vc = ggml_set_2d(ctx0, vc, | |
ggml_reshape_2d(ctx0, Vcur, N*n_embd, n_batch), | |
ggml_element_size(vc)*n_ctx*n_embd, | |
ggml_element_size(vc)*(n_past + il*n_embd*n_batch*n_ctx)); | |
assert_shape_1d(kc, n_embd * n_ctx * n_batch * n_layer); | |
assert_shape_1d(vc, n_embd * n_ctx * n_batch * n_layer); | |
} | |
// Qcur shape [n_embd/n_head, n_head, N, n_batch] | |
// Q shape [n_embd/n_head, N, n_head, n_batch] | |
struct ggml_tensor * Q = | |
ggml_permute(ctx0, | |
Qcur, | |
0, 2, 1, 3); | |
assert_shape_4d(Q, n_embd/n_head, N, n_head, n_batch); | |
// kv_self.k shape [n_embd * n_ctx * n_batch * n_layer] | |
// K shape [n_embd/n_head, n_past + N, n_head, n_batch] | |
struct ggml_tensor * K = | |
ggml_permute(ctx0, | |
ggml_reshape_4d(ctx0, | |
ggml_view_3d(ctx0, | |
kc, | |
n_embd, | |
(n_past + N), | |
n_batch, | |
n_embd*ggml_element_size(kc), | |
n_ctx*n_embd*ggml_element_size(kc), | |
il*n_batch*n_ctx*n_embd*ggml_element_size(kc)), | |
n_embd/n_head, n_head, n_past + N, n_batch), | |
0, 2, 1, 3); | |
assert_shape_4d(K, n_embd/n_head, n_past + N, n_head, n_batch); | |
// K * Q | |
// KQ shape [n_past + N, N, n_head, n_batch] | |
struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q); | |
assert_shape_4d(KQ, n_past + N, N, n_head, n_batch); | |
// KQ_scaled = KQ / sqrt(n_embd/n_head) | |
// KQ_scaled shape [n_past + N, N, n_head, n_batch] | |
struct ggml_tensor * KQ_scaled = | |
ggml_scale(ctx0, | |
KQ, | |
ggml_new_f32(ctx0, 1.0f/sqrtf(float(n_embd)/n_head))); | |
assert_shape_4d(KQ_scaled, n_past + N, N, n_head, n_batch); | |
// KQ_masked = mask_past(KQ_scaled) | |
// KQ_masked shape [n_past + N, N, n_head, n_batch] | |
struct ggml_tensor * KQ_masked = ggml_diag_mask_inf(ctx0, KQ_scaled, n_past); | |
assert_shape_4d(KQ_masked, n_past + N, N, n_head, n_batch); | |
// KQ = soft_max(KQ_masked) | |
// KQ_soft_max shape [n_past + N, N, n_head, n_batch] | |
struct ggml_tensor * KQ_soft_max = ggml_soft_max(ctx0, KQ_masked); | |
assert_shape_4d(KQ_soft_max, n_past + N, N, n_head, n_batch); | |
// split cached V into n_head heads | |
// kv_self.v shape [n_ctx * n_embd * n_batch * n_layer] | |
// V shape [n_past + N, n_embd/n_head, n_head, n_batch] == kv_self.v[:(n_past+N),:,:,il] | |
struct ggml_tensor * V = | |
ggml_view_4d(ctx0, vc, | |
n_past + N, n_embd/n_head, n_head, n_batch, | |
ggml_element_size(vc)*n_ctx, | |
ggml_element_size(vc)*n_ctx*n_embd/n_head, | |
ggml_element_size(vc)*n_ctx*n_embd, | |
il*n_batch*n_ctx*n_embd*ggml_element_size(vc)); | |
assert_shape_4d(V, n_past + N, n_embd/n_head, n_head, n_batch); | |
// KQV shape [n_embd/n_head, N, n_head, n_batch] | |
struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ_soft_max); | |
assert_shape_4d(KQV, n_embd/n_head, N, n_head, n_batch); | |
// KQV_merged = KQV.permute(0, 2, 1, 3) | |
// KQV_merged shape [n_embd/n_head, n_head, N, n_batch] | |
struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3); | |
assert_shape_4d(KQV_merged, n_embd/n_head, n_head, N, n_batch); | |
// KQV_merged shape | |
// cur = KQV_merged.contiguous().view(n_embd, N) | |
// cur shape [n_embd,N*n_batch,1,1] | |
cur = ggml_reshape_2d(ctx0, ggml_cont(ctx0, KQV_merged), n_embd, N*n_batch); | |
assert_shape_2d(cur, n_embd, N*n_batch); | |
// cur = ggml_cpy(ctx0, | |
// KQV_merged, | |
// ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, N)); | |
// projection (no bias) | |
// cur shape [n_embd,N*n_batch,1,1] | |
cur = ggml_mul_mat(ctx0, | |
model->layers[il].wo, | |
cur); | |
assert_shape_2d(cur, n_embd, N*n_batch); | |
} | |
// lctx.use_buf(ctx0, 1); | |
// inpFF shape [n_embd,N*n_batch,1,1] | |
struct ggml_tensor * inpFF = ggml_add(ctx0, cur, inpSA); | |
assert_shape_2d(inpFF, n_embd, N*n_batch); | |
// feed-forward network | |
{ | |
// norm | |
{ | |
// cur shape [n_embd,N*n_batch,1,1] | |
cur = ggml_rms_norm(ctx0, inpFF); | |
assert_shape_2d(cur, n_embd, N*n_batch); | |
// cur = ffn_norm*cur | |
// cur shape [n_embd,N*n_batch,1,1] | |
cur = ggml_mul(ctx0, | |
ggml_repeat(ctx0, model->layers[il].ffn_norm, cur), | |
cur); | |
assert_shape_2d(cur, n_embd, N*n_batch); | |
} | |
// tmp shape [n_ff,N*n_batch,1,1] | |
struct ggml_tensor * tmp = ggml_mul_mat(ctx0, | |
model->layers[il].w3, | |
cur); | |
assert_shape_2d(tmp, n_ff, N*n_batch); | |
// cur shape [n_ff,N*n_batch,1,1] | |
cur = ggml_mul_mat(ctx0, | |
model->layers[il].w1, | |
cur); | |
assert_shape_2d(cur, n_ff, N*n_batch); | |
// SILU activation | |
// cur shape [n_ff,N*n_batch,1,1] | |
cur = ggml_silu(ctx0, cur); | |
assert_shape_2d(cur, n_ff, N*n_batch); | |
// cur shape [n_ff,N*n_batch,1,1] | |
cur = ggml_mul(ctx0, cur, tmp); | |
assert_shape_2d(cur, n_ff, N*n_batch); | |
// cur shape [n_embd,N*n_batch,1,1] | |
cur = ggml_mul_mat(ctx0, | |
model->layers[il].w2, | |
cur); | |
assert_shape_2d(cur, n_embd, N*n_batch); | |
} | |
// cur shape [n_embd,N*n_batch,1,1] | |
cur = ggml_add(ctx0, cur, inpFF); | |
assert_shape_2d(cur, n_embd, N*n_batch); | |
// input for next layer | |
// inpL shape [n_embd,N*n_batch,1,1] | |
inpL = cur; | |
assert_shape_2d(inpL, n_embd, N*n_batch); | |
} | |
// norm | |
{ | |
// inpL shape [n_embd,N*n_batch,1,1] | |
inpL = ggml_rms_norm(ctx0, inpL); | |
assert_shape_2d(inpL, n_embd, N*n_batch); | |
// inpL = norm*inpL | |
// inpL shape [n_embd,N*n_batch,1,1] | |
inpL = ggml_mul(ctx0, | |
ggml_repeat(ctx0, model->norm, inpL), | |
inpL); | |
assert_shape_2d(inpL, n_embd, N*n_batch); | |
//embeddings = inpL; | |
} | |
// lm_head | |
// inpL shape [n_vocab,N*n_batch,1,1] | |
inpL = ggml_mul_mat(ctx0, model->output, inpL); | |
assert_shape_2d(inpL, n_vocab, N*n_batch); | |
{ | |
// inpL shape [n_vocab,N,n_batch,1] | |
inpL = ggml_reshape_3d(ctx0, | |
inpL, | |
n_vocab, N, n_batch); | |
assert_shape_3d(inpL, n_vocab, N, n_batch); | |
} | |
// run the computation | |
ggml_build_forward_expand(gf, inpL); | |
return inpL; | |
} | |
struct ggml_tensor * forward_lora( | |
struct llama_model_lora * model, | |
struct llama_kv_cache * cache, | |
struct ggml_context * ctx0, | |
struct ggml_cgraph * gf, | |
struct ggml_tensor * tokens_input, | |
const int n_tokens, | |
const int n_past) { | |
const int N = n_tokens; | |
struct llama_kv_cache& kv_self = *cache; | |
const auto & hparams = model->hparams; | |
const int n_ctx = hparams.n_ctx; | |
const int n_embd = hparams.n_embd; | |
const int n_layer = hparams.n_layer; | |
const int n_head = hparams.n_head; | |
const int n_rot = hparams.n_rot; | |
struct ggml_tensor * tokens = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N); | |
memcpy(tokens->data, tokens_input->data, N*ggml_element_size(tokens)); | |
struct ggml_tensor * kc = kv_self.k; | |
struct ggml_tensor * vc = kv_self.v; | |
// inpL shape [n_embd,N,1,1] | |
struct ggml_tensor * inpL = ggml_get_rows(ctx0, model->tok_embeddings, tokens); | |
for (int il = 0; il < n_layer; ++il) { | |
struct ggml_tensor * inpSA = inpL; | |
struct ggml_tensor * cur; | |
// norm | |
{ | |
// cur shape [n_embd,N,1,1] | |
cur = ggml_rms_norm(ctx0, inpL); | |
// cur = attention_norm*cur | |
cur = ggml_mul(ctx0, | |
ggml_repeat(ctx0, model->layers[il].attention_norm, cur), | |
cur); | |
} | |
// self-attention | |
{ | |
// compute Q and K and RoPE them | |
// wq shape [n_embd, n_embd, 1, 1] | |
// wk shape [n_embd, n_embd, 1, 1] | |
// Qcur shape [n_embd/n_head, n_head, N, 1] | |
// Kcur shape [n_embd/n_head, n_head, N, 1] | |
struct ggml_tensor * Qcur = ggml_rope(ctx0, | |
ggml_reshape_3d(ctx0, | |
ggml_mul_mat(ctx0, | |
model->layers[il].wqa, | |
ggml_mul_mat(ctx0, | |
model->layers[il].wqb, | |
cur)), | |
n_embd/n_head, n_head, N), | |
n_past, n_rot, 0); | |
struct ggml_tensor * Kcur = ggml_rope(ctx0, | |
ggml_reshape_3d(ctx0, | |
ggml_mul_mat(ctx0, | |
model->layers[il].wka, | |
ggml_mul_mat(ctx0, | |
model->layers[il].wkb, | |
cur)), | |
n_embd/n_head, n_head, N), | |
n_past, n_rot, 0); | |
// store key and value to memory | |
{ | |
// compute the transposed [N, n_embd] V matrix | |
// wv shape [n_embd, n_embd, 1, 1] | |
// Vcur shape [n_embd, N, 1, 1] | |
struct ggml_tensor * Vcur = ggml_cont(ctx0, | |
ggml_transpose(ctx0, | |
ggml_reshape_2d(ctx0, | |
ggml_mul_mat(ctx0, | |
model->layers[il].wva, | |
ggml_mul_mat(ctx0, | |
model->layers[il].wvb, | |
cur)), | |
n_embd, N))); | |
// kv_self.k shape [n_embd * n_ctx * n_layer, 1] | |
// kv_self.v shape [n_embd * n_ctx * n_layer, 1] | |
// k shape [n_embd * N, 1] == kv_self.k[:,n_past:n_past+N,il,0] | |
// v shape [N, n_embd, 1, 1] == kv_self.v[:,n_past:n_past+N,il,0] | |
/* { | |
struct ggml_tensor * k = ggml_view_1d(ctx0, kv_self.k, N*n_embd, (ggml_element_size(kv_self.k)*n_embd)*(il*n_ctx + n_past)); | |
struct ggml_tensor * v = ggml_view_2d(ctx0, kv_self.v, N, n_embd, | |
( n_ctx)*ggml_element_size(kv_self.v), | |
(il*n_ctx)*ggml_element_size(kv_self.v)*n_embd + n_past*ggml_element_size(kv_self.v)); | |
// important: storing RoPE-ed version of K in the KV cache! | |
ggml_build_forward_expand(gf, ggml_cpy(ctx0, Kcur, k)); | |
ggml_build_forward_expand(gf, ggml_cpy(ctx0, Vcur, v)); | |
} //*/ | |
kc = ggml_set_1d(ctx0, kc, ggml_reshape_1d(ctx0, Kcur, n_embd*N), (ggml_element_size(kv_self.k)*n_embd)*(il*n_ctx + n_past)); | |
vc = ggml_set_2d(ctx0, vc, Vcur, ( n_ctx)*ggml_element_size(kv_self.v), | |
(il*n_ctx)*ggml_element_size(kv_self.v)*n_embd + n_past*ggml_element_size(kv_self.v)); | |
} | |
// Qcur shape [n_embd/n_head, n_head, N, 1] | |
// Q shape [n_embd/n_head, N, n_head, 1] | |
struct ggml_tensor * Q = | |
ggml_permute(ctx0, | |
Qcur, | |
0, 2, 1, 3); | |
// kv_self.k shape [n_embd * n_ctx * n_layer, 1] | |
// K shape [n_embd/n_head, n_past + N, n_head, 1] | |
struct ggml_tensor * K = | |
ggml_permute(ctx0, | |
ggml_reshape_3d(ctx0, | |
ggml_view_1d(ctx0, kc, (n_past + N)*n_embd, il*n_ctx*ggml_element_size(kc)*n_embd), | |
n_embd/n_head, n_head, n_past + N), | |
0, 2, 1, 3); | |
// K * Q | |
// KQ shape [n_past + N, N, n_head, 1] | |
struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q); | |
// KQ_scaled = KQ / sqrt(n_embd/n_head) | |
// KQ_scaled shape [n_past + N, N, n_head, 1] | |
struct ggml_tensor * KQ_scaled = | |
ggml_scale(ctx0, | |
KQ, | |
ggml_new_f32(ctx0, 1.0f/sqrtf(float(n_embd)/n_head))); | |
// KQ_masked = mask_past(KQ_scaled) | |
// KQ_masked shape [n_past + N, N, n_head, 1] | |
struct ggml_tensor * KQ_masked = ggml_diag_mask_inf(ctx0, KQ_scaled, n_past); | |
// KQ = soft_max(KQ_masked) | |
// KQ_soft_max shape [n_past + N, N, n_head, 1] | |
struct ggml_tensor * KQ_soft_max = ggml_soft_max(ctx0, KQ_masked); | |
// split cached V into n_head heads | |
//// V shape [n_past + N, n_embd/n_head, n_head, 1] | |
// V shape [n_past + N, n_embd/n_head, n_head, 1] == kv_self.v[:,:(n_past+N),il,1] | |
struct ggml_tensor * V = | |
ggml_view_3d(ctx0, vc, | |
n_past + N, n_embd/n_head, n_head, | |
n_ctx*ggml_element_size(vc), | |
n_ctx*ggml_element_size(vc)*n_embd/n_head, | |
il*n_ctx*ggml_element_size(vc)*n_embd); | |
// KQV shape [n_embd/n_head, N, n_head, 1] | |
struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ_soft_max); | |
// KQV_merged = KQV.permute(0, 2, 1, 3) | |
// KQV_merged shape [n_embd/n_head, n_head, N, 1] | |
struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3); | |
// KQV_merged shape | |
// cur = KQV_merged.contiguous().view(n_embd, N) | |
// cur shape [n_embd,N,1,1] | |
cur = ggml_reshape_2d(ctx0, ggml_cont(ctx0, KQV_merged), n_embd, N); | |
// cur = ggml_cpy(ctx0, | |
// KQV_merged, | |
// ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, N)); | |
// projection (no bias) | |
// cur shape [n_embd,N,1,1] | |
cur = ggml_mul_mat(ctx0, | |
model->layers[il].woa, | |
ggml_mul_mat(ctx0, | |
model->layers[il].wob, | |
cur)); | |
} | |
// inpFF shape [n_embd,N,1,1] | |
struct ggml_tensor * inpFF = ggml_add(ctx0, cur, inpSA); | |
// feed-forward network | |
{ | |
// norm | |
{ | |
// cur shape [n_embd,N,1,1] | |
cur = ggml_rms_norm(ctx0, inpFF); | |
// cur = ffn_norm*cur | |
// cur shape [n_embd,N,1,1] | |
cur = ggml_mul(ctx0, | |
ggml_repeat(ctx0, model->layers[il].ffn_norm, cur), | |
cur); | |
} | |
// tmp shape [n_ff,N,1,1] | |
struct ggml_tensor * tmp = ggml_mul_mat(ctx0, | |
model->layers[il].w3, | |
cur); | |
// cur shape [n_ff,N,1,1] | |
cur = ggml_mul_mat(ctx0, | |
model->layers[il].w1, | |
cur); | |
// SILU activation | |
// cur shape [n_ff,N,1,1] | |
cur = ggml_silu(ctx0, cur); | |
// cur shape [n_ff,N,1,1] | |
cur = ggml_mul(ctx0, cur, tmp); | |
// cur shape [n_embd,N,1,1] | |
cur = ggml_mul_mat(ctx0, | |
model->layers[il].w2, | |
cur); | |
} | |
// cur shape [n_embd,N,1,1] | |
cur = ggml_add(ctx0, cur, inpFF); | |
// input for next layer | |
// inpL shape [n_embd,N,1,1] | |
inpL = cur; | |
} | |
// norm | |
{ | |
// inpL shape [n_embd,N,1,1] | |
inpL = ggml_rms_norm(ctx0, inpL); | |
// inpL = norm*inpL | |
// inpL shape [n_embd,N,1,1] | |
inpL = ggml_mul(ctx0, | |
ggml_repeat(ctx0, model->norm, inpL), | |
inpL); | |
//embeddings = inpL; | |
} | |
// lm_head | |
// inpL shape [n_vocab,N,1,1] | |
inpL = ggml_mul_mat(ctx0, | |
model->outputa, | |
ggml_mul_mat(ctx0, | |
model->outputb, | |
inpL)); | |
// ggml_set_scratch(ctx0, { 0, 0, nullptr, }); | |
// run the computation | |
ggml_build_forward_expand(gf, inpL); | |
return inpL; | |
} | |
void sample_softmax(struct ggml_tensor * logits, struct ggml_tensor * probs, struct ggml_tensor * best_samples) { | |
assert(logits->n_dims == 2); | |
assert(probs->n_dims == 2); | |
assert(best_samples->n_dims == 1); | |
assert(logits->ne[1] == best_samples->ne[0]); | |
assert(logits->ne[0] == probs->ne[0]); | |
assert(logits->ne[1] == probs->ne[1]); | |
for (int i = 0; i < logits->ne[1]; ++i) { | |
float max_logit = ggml_get_f32_1d(logits, i * logits->ne[0]); | |
ggml_set_i32_1d(best_samples, i, 0); | |
for (int k = 0; k < logits->ne[0]; ++k) { | |
float logit = ggml_get_f32_1d(logits, i * logits->ne[0] + k); | |
if (logit > max_logit) { | |
max_logit = logit; | |
ggml_set_i32_1d(best_samples, i, k); | |
} | |
} | |
float psum = 0; | |
for (int k = 0; k < logits->ne[0]; ++k) { | |
float logit = ggml_get_f32_1d(logits, i * logits->ne[0] + k); | |
float p = (logit == -INFINITY) ? 0 : expf(logit - max_logit); | |
psum += p; | |
ggml_set_f32_1d(probs, i * probs->ne[0] + k, p); | |
} | |
for (int k = 0; k < logits->ne[0]; ++k) { | |
float p = ggml_get_f32_1d(probs, i*probs->ne[0] + k); | |
ggml_set_f32_1d(probs, i * probs->ne[0] + k, p / psum); | |
} | |
} | |
} | |
void sample_softmax_batch(struct ggml_context * ctx, struct ggml_tensor * logits, struct ggml_tensor * probs, struct ggml_tensor * best_samples) { | |
GGML_ASSERT(best_samples->n_dims == 2); | |
GGML_ASSERT(logits->n_dims == 3); | |
GGML_ASSERT(probs->n_dims == 3); | |
int n_tokens = best_samples->ne[0]; | |
int n_batch = best_samples->ne[1]; | |
int n_vocab = logits->ne[0]; | |
GGML_ASSERT(n_tokens == logits->ne[1]); | |
GGML_ASSERT(n_batch == logits->ne[2]); | |
GGML_ASSERT(n_vocab == probs->ne[0]); | |
GGML_ASSERT(n_tokens == probs->ne[1]); | |
GGML_ASSERT(n_batch == probs->ne[2]); | |
for (int k = 0; k < n_batch; ++k) { | |
struct ggml_tensor * best_samples_k = ggml_view_1d(ctx, | |
best_samples, | |
best_samples->ne[0], | |
k*best_samples->nb[1]); | |
struct ggml_tensor * logits_k = ggml_view_2d(ctx, | |
logits, | |
logits->ne[0], | |
logits->ne[1], | |
logits->nb[1], | |
k*logits->nb[2]); | |
struct ggml_tensor * probs_k = ggml_view_2d(ctx, | |
probs, | |
probs->ne[0], | |
probs->ne[1], | |
probs->nb[1], | |
k*probs->nb[2]); | |
sample_softmax(logits_k, probs_k, best_samples_k); | |
} | |
} | |
void print_row(struct ggml_tensor * probs, int i) { | |
for (int k = 0; k < probs->ne[0]; ++k) { | |
float p = ggml_get_f32_1d(probs, i*probs->ne[0] + k); | |
printf(" %.2f", p); | |
} | |
printf("\n"); | |
} | |
void print_matrix(struct ggml_tensor * probs) { | |
assert(probs->n_dims == 2); | |
for (int i = 0; i < probs->ne[1]; ++i) { | |
for (int k = 0; k < probs->ne[0]; ++k) { | |
float p = ggml_get_f32_1d(probs, i*probs->ne[0] + k); | |
printf(" %.2f", p); | |
} | |
printf("\n"); | |
} | |
} | |
void print_token(int token, int n_vocab) { | |
for (int k = 0; k < token; ++k) { | |
printf(" "); | |
} | |
printf("X"); | |
for (int k = token+1; k < n_vocab; ++k) { | |
printf(" "); | |
} | |
printf("\n"); | |
} | |
void print_tokens(struct ggml_tensor * tokens, int n_vocab) { | |
for (int i=0; i<tokens->ne[0]; ++i) { | |
int token = ggml_get_i32_1d(tokens, i); | |
print_token(token, n_vocab); | |
} | |
} | |
void get_example_targets(int example_id, struct ggml_tensor * tokens_input, struct ggml_tensor * targets) { | |
int n_tokens = tokens_input->ne[0]; | |
int n_vocab = targets->ne[0]; | |
float randomness = 0.0f; | |
// ggml_set_zero(targets); | |
ggml_set_f32(targets, -1.0f); | |
ggml_set_i32_1d(tokens_input, 0, 0); | |
for (int i=1; i<n_tokens+1; ++i) { | |
float x = example_id + i * 3.14159f * 2.0f * 1.0f * 0.5f / n_tokens; | |
float y = sinf(x);//*cosf(x*1.1f+1.0f); | |
float z = (y+1.0f)*0.5f; // scale to [0..1] | |
z += (frand()-0.5f)*(randomness/n_vocab); | |
z = (z < 0.0f) ? 0.0f : (z > 1.0f) ? 1.0f : z; // clamp to [0..1] | |
int token = std::max(1,std::min(1+(int)(z*(float)(n_vocab-1)), n_vocab-1)); | |
ggml_set_f32_1d(targets, (i-1)*n_vocab + token, +1.0f); | |
if (i<n_tokens) { | |
ggml_set_i32_1d(tokens_input, i, token); | |
} | |
} | |
} | |
void get_example_targets_batch(struct ggml_context * ctx, int example_id, struct ggml_tensor * tokens_input, struct ggml_tensor * targets) { | |
GGML_ASSERT(tokens_input->n_dims == 2); | |
GGML_ASSERT( targets->n_dims == 3); | |
int n_tokens = tokens_input->ne[0]; | |
int n_batch = tokens_input->ne[1]; | |
GGML_ASSERT(n_tokens == targets->ne[1]); | |
GGML_ASSERT(n_batch == targets->ne[2]); | |
for (int k=0; k<n_batch; ++k) { | |
struct ggml_tensor * tokens_input_k = ggml_view_1d(ctx, | |
tokens_input, | |
tokens_input->ne[0], | |
k*tokens_input->nb[1]); | |
struct ggml_tensor * targets_k = ggml_view_2d(ctx, | |
targets, | |
targets->ne[0], | |
targets->ne[1], | |
targets->nb[1], | |
k*targets->nb[2]); | |
get_example_targets(example_id*n_batch + k, tokens_input_k, targets_k); | |
} | |
} | |
void lshift_examples(struct ggml_tensor * tokens_input, struct ggml_tensor * targets, int n_shift) { | |
int n_tokens = tokens_input->ne[0]; | |
int n_vocab = targets->ne[0]; | |
for (int i=0; i<n_tokens-n_shift; ++i) { | |
ggml_set_i32_1d(tokens_input, i, ggml_get_i32_1d(tokens_input, i + n_shift)); | |
for (int k=0; k<n_vocab; ++k) { | |
ggml_set_f32_1d(targets, i*n_vocab + k, ggml_get_f32_1d(targets, (i + n_shift)*n_vocab + k)); | |
} | |
} | |
} | |
struct ggml_tensor * square_error_loss(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b) { | |
// todo: instead of a-b: a[1:]-b[:-1] | |
return ggml_sum(ctx, ggml_sqr(ctx, ggml_sub(ctx, a, b))); | |
} | |
struct ggml_tensor * cross_entropy_loss(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b) { | |
const float eps = 1e-3f; | |
return | |
ggml_sum(ctx, | |
ggml_neg(ctx, | |
ggml_sum_rows(ctx, | |
ggml_mul(ctx, | |
ggml_soft_max(ctx, a), | |
ggml_log(ctx, | |
ggml_add1(ctx, | |
ggml_soft_max(ctx, b), | |
ggml_new_f32(ctx, eps))))))); | |
} | |
int main(int argc, char ** argv) { | |
if (argc < 1) { | |
fprintf(stderr, "usage: %s\n", argv[0]); | |
return 1; | |
} | |
struct ggml_init_params lcparams; | |
lcparams.mem_size = 1024ll*1024ll*1024ll; | |
lcparams.mem_buffer = NULL; | |
lcparams.no_alloc = false; | |
struct llama_model model; | |
model.hparams.n_vocab = 8; | |
model.hparams.n_ctx = 8; | |
model.hparams.n_embd = 32; | |
model.hparams.n_mult = 2; | |
model.hparams.n_head = 8; | |
model.hparams.n_layer = 1; | |
model.hparams.n_rot = std::min(16u, model.hparams.n_embd / model.hparams.n_head); | |
// model.hparams.n_embd = 32; | |
// model.hparams.n_mult = 2; | |
// model.hparams.n_head = 4; | |
// model.hparams.n_layer = 8; | |
// model.hparams.n_rot = 8; | |
model.ctx = ggml_init(lcparams); | |
printf("init model\n"); | |
init_model(&model); | |
set_param_model(&model); | |
randomize_model(&model, 1337, 0.0f, 1.0f, -1.0f, +1.0f); | |
/* | |
struct llama_model_lora model_lora; | |
// model.hparams.n_vocab = 6; | |
// model.hparams.n_ctx = 64; | |
// model.hparams.n_embd = 128; | |
// model.hparams.n_mult = 2; | |
// model.hparams.n_head = 8; | |
// model.hparams.n_layer = 6; | |
// model.hparams.n_rot = model.hparams.n_embd / model.hparams.n_head; | |
model_lora.hparams.n_vocab = 16; | |
model_lora.hparams.n_ctx = 32; | |
model_lora.hparams.n_embd = 256; | |
model_lora.hparams.n_mult = 2; | |
model_lora.hparams.n_head = 16; | |
model_lora.hparams.n_layer = 1; | |
model_lora.hparams.n_lora = 64; | |
model_lora.hparams.n_rot = MIN(16, model_lora.hparams.n_embd / model_lora.hparams.n_head); | |
// model.hparams.n_rot = (model.hparams.n_embd / model.hparams.n_head) / 2; | |
// model.hparams.n_embd = 32; | |
// model.hparams.n_mult = 2; | |
// model.hparams.n_head = 4; | |
// model.hparams.n_layer = 8; | |
// model.hparams.n_rot = 8; | |
model_lora.ctx = ggml_init(lcparams); | |
printf("init model_lora\n"); | |
init_model_lora(&model_lora); | |
set_param_model_lora(&model_lora); | |
randomize_model_lora(&model_lora, 1337, 0.0f, 1.0f, -1.0f, +1.0f); | |
*/ | |
int n_batch = 8; | |
// key + value cache for the self attention | |
struct llama_kv_cache kv_self; | |
printf("init_kv_cache\n"); | |
kv_self.ctx = model.ctx; | |
init_kv_cache(&kv_self, &model, n_batch); | |
//init_kv_cache_lora(&kv_self, &model_lora); | |
size_t compute_size = 1024ll*1024ll*1024ll; | |
uint8_t * compute_addr = new uint8_t[compute_size]; | |
int n_examples = 256; | |
int n_tokens = model.hparams.n_ctx; | |
int n_vocab = model.hparams.n_vocab; | |
for (int ex=0; ex<n_examples; ++ex) { | |
struct ggml_init_params params = { | |
/*.mem_size =*/ compute_size, | |
/*.mem_buffer =*/ compute_addr, | |
/*.no_alloc =*/ false, | |
}; | |
struct ggml_context * ctx0 = ggml_init(params); | |
struct ggml_tensor * after_opt_best_samples = ggml_new_tensor_2d(ctx0, GGML_TYPE_I32, n_tokens, n_batch); | |
struct ggml_tensor * after_opt_probs = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_vocab, n_tokens, n_batch); | |
struct ggml_tensor * tokens_input = ggml_new_tensor_2d(ctx0, GGML_TYPE_I32, n_tokens, n_batch); | |
struct ggml_tensor * targets = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_vocab, n_tokens, n_batch); | |
int n_past = 0; | |
ggml_cgraph gf = {}; | |
gf.n_threads = 1; | |
get_example_targets_batch(ctx0, 64*ex+0, tokens_input, targets); | |
struct ggml_tensor * logits = forward_batch(&model, &kv_self, ctx0, &gf, tokens_input, n_tokens, n_past, n_batch); | |
// struct ggml_tensor * e = cross_entropy_loss(ctx0, targets, logits); | |
struct ggml_tensor * e = square_error_loss(ctx0, targets, logits); | |
ggml_build_forward_expand(&gf, e); | |
ggml_graph_compute(ctx0, &gf); | |
float error_before_opt = ggml_get_f32_1d(e, 0); | |
struct ggml_opt_params opt_params_adam = ggml_opt_default_params(GGML_OPT_ADAM); | |
struct ggml_opt_params opt_params_lbfgs = ggml_opt_default_params(GGML_OPT_LBFGS); | |
opt_params_adam.print_forward_graph = false; | |
opt_params_adam.print_backward_graph = false; | |
opt_params_lbfgs.print_forward_graph = false; | |
opt_params_lbfgs.print_backward_graph = false; | |
opt_params_adam.adam.n_iter = 16; | |
opt_params_lbfgs.lbfgs.n_iter = 16; | |
// ggml_opt(ctx0, opt_params_adam, e); | |
ggml_opt(ctx0, opt_params_lbfgs, e); | |
// | |
ggml_build_forward_expand(&gf, e); | |
ggml_graph_compute(ctx0, &gf); | |
float error_after_opt = ggml_get_f32_1d(e, 0); | |
if (ex % 8 == 0) { | |
printf("Example %d\n", (ex+1)); | |
printf("error_before_opt: %.2f\n", error_before_opt); | |
printf("error_after_opt: %.2f\n", error_after_opt); | |
} | |
if (ex % 64 == 0) { | |
sample_softmax_batch(ctx0, logits, after_opt_probs, after_opt_best_samples); | |
// printf("probabilities after optimization:\n"); | |
// print_matrix(after_opt_probs); | |
printf("best samples after optimization:\n"); | |
print_tokens(after_opt_best_samples, n_vocab); | |
} | |
ggml_free(ctx0); | |
} | |
{ | |
int n_gen = 128; | |
int sample_ctx = n_tokens-n_tokens/8; | |
printf("Generating %d tokens.\n", n_gen); | |
struct ggml_tensor * tokens_input = ggml_new_tensor_1d(model.ctx, GGML_TYPE_I32, n_tokens); | |
struct ggml_tensor * targets = ggml_new_tensor_2d(model.ctx, GGML_TYPE_F32, n_vocab, n_tokens); | |
get_example_targets(137, tokens_input, targets); | |
for (int i=sample_ctx; i<n_tokens; ++i) { | |
ggml_set_i32_1d(tokens_input, i, n_vocab/2); | |
} | |
for (int i=0; i<sample_ctx-1; ++i) { | |
print_token(ggml_get_i32_1d(tokens_input, i), n_vocab); | |
} | |
printf("---\n"); | |
for (int i=0; i<n_gen; ++i) { | |
struct ggml_init_params params = { | |
/*.mem_size =*/ compute_size, | |
/*.mem_buffer =*/ compute_addr, | |
/*.no_alloc =*/ false, | |
}; | |
struct ggml_context * ctx0 = ggml_init(params); | |
ggml_cgraph gf = {}; | |
gf.n_threads = 1; | |
int n_past = 0; | |
struct ggml_tensor * logits = forward(&model, &kv_self, ctx0, &gf, tokens_input, sample_ctx, n_past); | |
ggml_build_forward_expand(&gf, logits); | |
ggml_graph_compute(ctx0, &gf); | |
struct ggml_tensor * best_samples = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, sample_ctx); | |
struct ggml_tensor * probs = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_vocab, sample_ctx); | |
sample_softmax(logits, probs, best_samples); | |
// int sample_at = n_tokens-1; | |
int token = ggml_get_i32_1d(best_samples, sample_ctx-1); | |
// print_row(probs, sample_at); | |
print_token(token, n_vocab); | |
lshift_examples(tokens_input, targets, 1); | |
ggml_set_i32_1d(tokens_input, 0, 0); | |
ggml_set_i32_1d(tokens_input, sample_ctx-1, token); | |
ggml_free(ctx0); | |
} | |
} | |
print_matrix(model.tok_embeddings); | |
printf("done\n"); | |
// ggml_free(kv_self.ctx); | |
// ggml_free(model_lora.ctx); | |
ggml_free(model.ctx); | |
return 0; | |
} | |