Spaces:
Build error
Build error
std::vector<float> softmax(const std::vector<float>& logits) { | |
std::vector<float> probs(logits.size()); | |
float max_logit = logits[0]; | |
for (float v : logits) max_logit = std::max(max_logit, v); | |
double sum_exp = 0.0; | |
for (size_t i = 0; i < logits.size(); i++) { | |
// Subtract the maximum logit value from the current logit value for numerical stability | |
const float logit = logits[i] - max_logit; | |
const float exp_logit = expf(logit); | |
sum_exp += exp_logit; | |
probs[i] = exp_logit; | |
} | |
for (size_t i = 0; i < probs.size(); i++) probs[i] /= sum_exp; | |
return probs; | |
} | |
void perplexity(llama_context * ctx, const gpt_params & params) { | |
// Download: https://s3.amazonaws.com/research.metamind.io/wikitext/wikitext-2-raw-v1.zip?ref=salesforce-research | |
// Run `./perplexity -m models/7B/ggml-model-q4_0.bin -f wiki.test.raw` | |
// Output: `perplexity: 13.5106 [114/114]` | |
// BOS tokens will be added for each chunk before eval | |
auto tokens = ::llama_tokenize(ctx, params.prompt, true); | |
int count = 0; | |
const int n_chunk = tokens.size() / params.n_ctx; | |
const int n_vocab = llama_n_vocab(ctx); | |
const int n_batch = params.n_batch; | |
double nll = 0.0; | |
fprintf(stderr, "%s: calculating perplexity over %d chunks, batch_size=%d\n", __func__, n_chunk, n_batch); | |
for (int i = 0; i < n_chunk; ++i) { | |
const int start = i * params.n_ctx; | |
const int end = start + params.n_ctx; | |
const int num_batches = (params.n_ctx + n_batch - 1) / n_batch; | |
std::vector<float> logits; | |
const auto t_start = std::chrono::high_resolution_clock::now(); | |
for (int j = 0; j < num_batches; ++j) { | |
const int batch_start = start + j * n_batch; | |
const int batch_size = std::min(end - batch_start, n_batch); | |
// save original token and restore it after eval | |
const auto token_org = tokens[batch_start]; | |
// add BOS token for the first batch of each chunk | |
if (j == 0) { | |
tokens[batch_start] = llama_token_bos(); | |
} | |
if (llama_eval(ctx, tokens.data() + batch_start, batch_size, j * n_batch, params.n_threads)) { | |
fprintf(stderr, "%s : failed to eval\n", __func__); | |
return; | |
} | |
// restore the original token in case it was set to BOS | |
tokens[batch_start] = token_org; | |
const auto batch_logits = llama_get_logits(ctx); | |
logits.insert(logits.end(), batch_logits, batch_logits + batch_size * n_vocab); | |
} | |
const auto t_end = std::chrono::high_resolution_clock::now(); | |
if (i == 0) { | |
const float t_total = std::chrono::duration<float>(t_end - t_start).count(); | |
fprintf(stderr, "%s: %.2f seconds per pass - ETA ", __func__, t_total); | |
int total_seconds = (int)(t_total * n_chunk); | |
if (total_seconds >= 60*60) { | |
fprintf(stderr, "%d hours ", total_seconds / (60*60)); | |
total_seconds = total_seconds % (60*60); | |
} | |
fprintf(stderr, "%d minutes\n", total_seconds / 60); | |
} | |
// We get the logits for all the tokens in the context window (params.n_ctx) | |
// from llama_eval above. Now, based on https://huggingface.co/docs/transformers/perplexity, | |
// calculate the perplexity over the last half of the window (so the model always has | |
// some context to predict the token). | |
// | |
// We rely on the fact that attention in the forward pass only looks at previous | |
// tokens here, so the logits returned for each token are an accurate representation | |
// of what the model would have predicted at that point. | |
// | |
// Example, we have a context window of 512, we will compute perplexity for each of the | |
// last 256 tokens. Then, we split the input up into context window size chunks to | |
// process the entire prompt. | |
for (int j = std::min(512, params.n_ctx / 2); j < params.n_ctx - 1; ++j) { | |
// Calculate probability of next token, given the previous ones. | |
const std::vector<float> tok_logits( | |
logits.begin() + (j + 0) * n_vocab, | |
logits.begin() + (j + 1) * n_vocab); | |
const float prob = softmax(tok_logits)[tokens[start + j + 1]]; | |
nll += -std::log(prob); | |
++count; | |
} | |
// perplexity is e^(average negative log-likelihood) | |
printf("[%d]%.4lf,", i + 1, std::exp(nll / count)); | |
fflush(stdout); | |
} | |
printf("\n"); | |
} | |
int main(int argc, char ** argv) { | |
gpt_params params; | |
params.n_batch = 512; | |
if (gpt_params_parse(argc, argv, params) == false) { | |
return 1; | |
} | |
params.perplexity = true; | |
params.n_batch = std::min(params.n_batch, params.n_ctx); | |
if (params.n_ctx > 2048) { | |
fprintf(stderr, "%s: warning: model does not support context sizes greater than 2048 tokens (%d specified);" | |
"expect poor results\n", __func__, params.n_ctx); | |
} | |
fprintf(stderr, "%s: build = %d (%s)\n", __func__, BUILD_NUMBER, BUILD_COMMIT); | |
if (params.seed < 0) { | |
params.seed = time(NULL); | |
} | |
fprintf(stderr, "%s: seed = %d\n", __func__, params.seed); | |
std::mt19937 rng(params.seed); | |
if (params.random_prompt) { | |
params.prompt = gpt_random_prompt(rng); | |
} | |
llama_init_backend(); | |
llama_context * ctx; | |
// load the model and apply lora adapter, if any | |
ctx = llama_init_from_gpt_params(params); | |
if (ctx == NULL) { | |
fprintf(stderr, "%s: error: unable to load model\n", __func__); | |
return 1; | |
} | |
// print system information | |
{ | |
fprintf(stderr, "\n"); | |
fprintf(stderr, "system_info: n_threads = %d / %d | %s\n", | |
params.n_threads, std::thread::hardware_concurrency(), llama_print_system_info()); | |
} | |
perplexity(ctx, params); | |
llama_print_timings(ctx); | |
llama_free(ctx); | |
return 0; | |
} | |