kristada673's picture
Upload 19 files
de6e775
raw
history blame
4.55 kB
import copy
import os
import time
import warnings
warnings.filterwarnings("ignore")
from typing import List
import pandas as pd
from tqdm import tqdm
import stockstats
import talib
from meta.data_processors._base import _Base
import akshare as ak # pip install akshare
class Akshare(_Base):
def __init__(
self,
data_source: str,
start_date: str,
end_date: str,
time_interval: str,
**kwargs,
):
start_date = self.transfer_date(start_date)
end_date = self.transfer_date(end_date)
super().__init__(data_source, start_date, end_date, time_interval, **kwargs)
if "adj" in kwargs.keys():
self.adj = kwargs["adj"]
print(f"Using {self.adj} method.")
else:
self.adj = ""
if "period" in kwargs.keys():
self.period = kwargs["period"]
else:
self.period = "daily"
def get_data(self, id) -> pd.DataFrame:
return ak.stock_zh_a_hist(
symbol=id,
period=self.time_interval,
start_date=self.start_date,
end_date=self.end_date,
adjust=self.adj,
)
def download_data(
self, ticker_list: List[str], save_path: str = "./data/dataset.csv"
):
"""
`pd.DataFrame`
7 columns: A tick symbol, time, open, high, low, close and volume
for the specified stock ticker
"""
assert self.time_interval in [
"daily",
"weekly",
"monthly",
], "Not supported currently"
self.ticker_list = ticker_list
self.dataframe = pd.DataFrame()
for i in tqdm(ticker_list, total=len(ticker_list)):
nonstandard_id = self.transfer_standard_ticker_to_nonstandard(i)
df_temp = self.get_data(nonstandard_id)
df_temp["tic"] = i
# df_temp = self.get_data(i)
self.dataframe = pd.concat([self.dataframe, df_temp])
# self.dataframe = self.dataframe.append(df_temp)
# print("{} ok".format(i))
time.sleep(0.25)
self.dataframe.columns = [
"time",
"open",
"close",
"high",
"low",
"volume",
"amount",
"amplitude",
"pct_chg",
"change",
"turnover",
"tic",
]
self.dataframe.sort_values(by=["time", "tic"], inplace=True)
self.dataframe.reset_index(drop=True, inplace=True)
self.dataframe = self.dataframe[
["tic", "time", "open", "high", "low", "close", "volume"]
]
# self.dataframe.loc[:, 'tic'] = pd.DataFrame((self.dataframe['tic'].tolist()))
self.dataframe["time"] = pd.to_datetime(
self.dataframe["time"], format="%Y-%m-%d"
)
self.dataframe["day"] = self.dataframe["time"].dt.dayofweek
self.dataframe["time"] = self.dataframe.time.apply(
lambda x: x.strftime("%Y-%m-%d")
)
self.dataframe.dropna(inplace=True)
self.dataframe.sort_values(by=["time", "tic"], inplace=True)
self.dataframe.reset_index(drop=True, inplace=True)
self.save_data(save_path)
print(
f"Download complete! Dataset saved to {save_path}. \nShape of DataFrame: {self.dataframe.shape}"
)
def data_split(self, df, start, end, target_date_col="time"):
"""
split the dataset into training or testing using time
:param data: (df) pandas dataframe, start, end
:return: (df) pandas dataframe
"""
data = df[(df[target_date_col] >= start) & (df[target_date_col] < end)]
data = data.sort_values([target_date_col, "tic"], ignore_index=True)
data.index = data[target_date_col].factorize()[0]
return data
def transfer_standard_ticker_to_nonstandard(self, ticker: str) -> str:
# "600000.XSHG" -> "600000"
# "000612.XSHE" -> "000612"
# "600000.SH" -> "600000"
# "000612.SZ" -> "000612"
if "." in ticker:
n, alpha = ticker.split(".")
# assert alpha in ["XSHG", "XSHE"], "Wrong alpha"
return n
def transfer_date(self, time: str) -> str:
if "-" in time:
time = "".join(time.split("-"))
elif "." in time:
time = "".join(time.split("."))
elif "/" in time:
time = "".join(time.split("/"))
return time