Spaces:
Sleeping
Sleeping
Initial commit
Browse files- app.py +82 -55
- requirements.txt +1 -0
app.py
CHANGED
@@ -2,7 +2,7 @@ import warnings
|
|
2 |
import torchvision
|
3 |
import torch
|
4 |
import pandas as pd
|
5 |
-
from transformers import
|
6 |
from sklearn.metrics.pairwise import cosine_similarity
|
7 |
import streamlit as st
|
8 |
|
@@ -10,41 +10,65 @@ import streamlit as st
|
|
10 |
torchvision.disable_beta_transforms_warning()
|
11 |
warnings.filterwarnings("ignore", category=UserWarning, module="torchvision")
|
12 |
|
13 |
-
#
|
14 |
-
|
15 |
-
"
|
16 |
-
model="airesearch/wangchanberta-base-att-spm-uncased"
|
17 |
-
|
18 |
-
|
19 |
-
)
|
20 |
-
|
21 |
-
|
22 |
-
|
|
|
|
|
|
|
|
|
|
|
23 |
def get_embedding(text):
|
24 |
-
inputs =
|
25 |
with torch.no_grad():
|
26 |
outputs = model(**inputs)
|
27 |
-
return outputs.
|
28 |
|
29 |
# Streamlit app setup
|
30 |
st.title("Thai Full Sentence Similarity App")
|
31 |
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
|
|
|
|
41 |
|
42 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
""")
|
44 |
|
45 |
# User input box
|
46 |
st.subheader("Input Text")
|
47 |
-
input_text = st.text_input("Enter a sentence with `<mask>` to find similar predictions:", "
|
48 |
|
49 |
# Ensure the input includes a `<mask>`
|
50 |
if "<mask>" not in input_text:
|
@@ -53,42 +77,45 @@ if "<mask>" not in input_text:
|
|
53 |
|
54 |
# Process the input when available
|
55 |
if input_text:
|
56 |
-
# Display input text
|
57 |
st.write(f"Input Text: {input_text}")
|
58 |
|
59 |
-
#
|
60 |
baseline_text = input_text.replace("<mask>", "")
|
61 |
input_embedding = get_embedding(baseline_text)
|
62 |
|
63 |
# Generate mask predictions and calculate similarity with the full sentences
|
64 |
similarity_results = []
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
|
|
|
|
|
|
|
|
|
2 |
import torchvision
|
3 |
import torch
|
4 |
import pandas as pd
|
5 |
+
from transformers import AutoTokenizer, AutoModelForMaskedLM, pipeline
|
6 |
from sklearn.metrics.pairwise import cosine_similarity
|
7 |
import streamlit as st
|
8 |
|
|
|
10 |
torchvision.disable_beta_transforms_warning()
|
11 |
warnings.filterwarnings("ignore", category=UserWarning, module="torchvision")
|
12 |
|
13 |
+
# Load tokenizer and model with error handling for compatibility
|
14 |
+
try:
|
15 |
+
tokenizer = AutoTokenizer.from_pretrained("airesearch/wangchanberta-base-att-spm-uncased", use_fast=False)
|
16 |
+
model = AutoModelForMaskedLM.from_pretrained("airesearch/wangchanberta-base-att-spm-uncased")
|
17 |
+
model_name = "airesearch/wangchanberta-base-att-spm-uncased"
|
18 |
+
except Exception:
|
19 |
+
st.warning("Switching to xlm-roberta-base model due to compatibility issues.")
|
20 |
+
tokenizer = AutoTokenizer.from_pretrained("xlm-roberta-base")
|
21 |
+
model = AutoModelForMaskedLM.from_pretrained("xlm-roberta-base")
|
22 |
+
model_name = "xlm-roberta-base"
|
23 |
+
|
24 |
+
# Initialize the fill-mask pipeline
|
25 |
+
pipe = pipeline("fill-mask", model=model, tokenizer=tokenizer, framework="pt")
|
26 |
+
|
27 |
+
# Function to generate embeddings
|
28 |
def get_embedding(text):
|
29 |
+
inputs = tokenizer(text, return_tensors="pt")
|
30 |
with torch.no_grad():
|
31 |
outputs = model(**inputs)
|
32 |
+
return outputs.logits[:, 0, :].cpu().numpy()
|
33 |
|
34 |
# Streamlit app setup
|
35 |
st.title("Thai Full Sentence Similarity App")
|
36 |
|
37 |
+
st.write("""
|
38 |
+
### How This App Works
|
39 |
+
This app uses a mask-filling model to predict possible words or phrases that could fill in the `<mask>` token in a given sentence. It then calculates the similarity of each prediction with the original sentence to determine the most contextually appropriate completion.
|
40 |
+
|
41 |
+
### Example Sentence
|
42 |
+
In this example, we have the following sentence in Thai with a `<mask>` token:
|
43 |
+
- **Input**: `"นักท่องเที่ยวจำนวนมากเลือกที่จะไปเยือน <mask> เพื่อสัมผัสธรรมชาติ"`
|
44 |
+
- **Translation**: "Many tourists choose to visit `<mask>` to experience nature."
|
45 |
+
|
46 |
+
The `<mask>` token represents a location popular for its natural beauty.
|
47 |
|
48 |
+
### Potential Predictions
|
49 |
+
Here are some possible predictions the model might generate for `<mask>`:
|
50 |
+
1. `"นักท่องเที่ยวจำนวนมากเลือกที่จะไปเยือน เชียงใหม่ เพื่อสัมผัสธรรมชาติ"` - Chiang Mai
|
51 |
+
2. `"นักท่องเที่ยวจำนวนมากเลือกที่จะไปเยือน เขาใหญ่ เพื่อสัมผัสธรรมชาติ"` - Khao Yai
|
52 |
+
3. `"นักท่องเที่ยวจำนวนมากเลือกที่จะไปเยือน เกาะสมุย เพื่อสัมผัสธรรมชาติ"` - Koh Samui
|
53 |
+
4. `"นักท่องเที่ยวจำนวนมากเลือกที่จะไปเยือน ภูเก็ต เพื่อสัมผัสธรรมชาติ"` - Phuket
|
54 |
|
55 |
+
### Results Table
|
56 |
+
For each prediction, the app calculates:
|
57 |
+
- **Similarity Score**: Indicates how similar the predicted sentence is to the original input.
|
58 |
+
- **Model Score**: Represents the model's confidence in the predicted word for `<mask>`.
|
59 |
+
|
60 |
+
### Most Similar Prediction
|
61 |
+
The app will display the most contextually similar prediction based on the similarity score. For example:
|
62 |
+
- **Most Similar Prediction**: `"นักท่องเที่ยวจำนวนมากเลือกที่จะไปเยือน เชียงใหม่ เพื่อสัมผัสธรรมชาติ"`
|
63 |
+
- **Similarity Score**: 0.89
|
64 |
+
- **Model Score**: 0.16
|
65 |
+
|
66 |
+
Feel free to enter your own sentence with `<mask>` and explore the predictions!
|
67 |
""")
|
68 |
|
69 |
# User input box
|
70 |
st.subheader("Input Text")
|
71 |
+
input_text = st.text_input("Enter a sentence with `<mask>` to find similar predictions:", "ผู้ใช้งานท่าอากาศยานนานาชาติ <mask> มีกว่าสามล้านคน")
|
72 |
|
73 |
# Ensure the input includes a `<mask>`
|
74 |
if "<mask>" not in input_text:
|
|
|
77 |
|
78 |
# Process the input when available
|
79 |
if input_text:
|
|
|
80 |
st.write(f"Input Text: {input_text}")
|
81 |
|
82 |
+
# Generate baseline embedding (removing `<mask>` to get the full sentence)
|
83 |
baseline_text = input_text.replace("<mask>", "")
|
84 |
input_embedding = get_embedding(baseline_text)
|
85 |
|
86 |
# Generate mask predictions and calculate similarity with the full sentences
|
87 |
similarity_results = []
|
88 |
+
|
89 |
+
try:
|
90 |
+
result = pipe(input_text)
|
91 |
+
|
92 |
+
for r in result:
|
93 |
+
# Adjust based on observed output structure
|
94 |
+
prediction_text = r.get('sequence', '')
|
95 |
+
|
96 |
+
# Only proceed if we have a valid prediction text
|
97 |
+
if prediction_text:
|
98 |
+
prediction_embedding = get_embedding(prediction_text)
|
99 |
+
similarity = cosine_similarity(input_embedding, prediction_embedding)[0][0]
|
100 |
+
similarity_results.append({
|
101 |
+
"Prediction": prediction_text,
|
102 |
+
"Similarity Score": similarity,
|
103 |
+
"Model Score": r['score']
|
104 |
+
})
|
105 |
+
|
106 |
+
# Convert results to DataFrame for easy sorting and display
|
107 |
+
df_results = pd.DataFrame(similarity_results).sort_values(by="Similarity Score", ascending=False)
|
108 |
+
|
109 |
+
# Display all predictions sorted by similarity score
|
110 |
+
st.subheader("All Predictions Sorted by Similarity")
|
111 |
+
st.dataframe(df_results)
|
112 |
+
|
113 |
+
# Display the most similar prediction
|
114 |
+
most_similar = df_results.iloc[0]
|
115 |
+
st.subheader("Most Similar Prediction")
|
116 |
+
st.write(f"**Prediction**: {most_similar['Prediction']}")
|
117 |
+
st.write(f"**Similarity Score**: {most_similar['Similarity Score']:.4f}")
|
118 |
+
st.write(f"**Model Score**: {most_similar['Model Score']:.4f}")
|
119 |
+
|
120 |
+
except KeyError:
|
121 |
+
st.error("Unexpected model output structure; unable to retrieve predictions.")
|
requirements.txt
CHANGED
@@ -4,3 +4,4 @@ streamlit
|
|
4 |
pandas
|
5 |
scikit-learn
|
6 |
torchvision
|
|
|
|
4 |
pandas
|
5 |
scikit-learn
|
6 |
torchvision
|
7 |
+
sentencepiece
|