Spaces:
Sleeping
Sleeping
import cloudpickle | |
import os | |
import tensorflow as tf | |
from scraper import scrape_text | |
from fastapi import FastAPI, Response, Request | |
from typing import List, Dict | |
from pydantic import BaseModel, Field | |
from fastapi.exceptions import RequestValidationError | |
import uvicorn | |
import json | |
import logging | |
import multiprocessing | |
from news_classifier import predict_news_classes | |
os.environ["TOKENIZERS_PARALLELISM"] = "false" | |
os.environ["TF_USE_LEGACY_KERAS"] = "1" | |
def load_model(): | |
logging.warning('Entering load transformer') | |
with open("classification_models/label_encoder.bin", "rb") as model_file_obj: | |
label_encoder = cloudpickle.load(model_file_obj) | |
with open("classification_models/calibrated_model.bin", "rb") as model_file_obj: | |
calibrated_model = cloudpickle.load(model_file_obj) | |
tflite_model_path = os.path.join("classification_models", "model.tflite") | |
calibrated_model.estimator.tflite_model_path = tflite_model_path | |
logging.warning('Exiting load transformer') | |
return calibrated_model, label_encoder | |
async def scrape_urls(urls): | |
logging.warning('Entering scrape_urls()') | |
pool = multiprocessing.Pool(processes=multiprocessing.cpu_count()) | |
results = [] | |
for url in urls: | |
f = pool.apply_async(scrape_text, [url]) # asynchronously scraping text | |
results.append(f) # appending result to results | |
scraped_texts = [] | |
scrape_errors = [] | |
for f in results: | |
t, e = f.get(timeout=120) | |
scraped_texts.append(t) | |
scrape_errors.append(e) | |
pool.close() | |
pool.join() | |
logging.warning('Exiting scrape_urls()') | |
return scraped_texts, scrape_errors | |
description = '''API to classify news articles into categories from their URLs.\n | |
Categories = ASTROLOGY, BUSINESS, EDUCATION, ENTERTAINMENT, HEALTH, NATION, SCIENCE, SPORTS, TECHNOLOGY, WEATHER, WORLD''' | |
app = FastAPI(title='News Classifier API', | |
description=description, | |
version="0.0.1", | |
contact={ | |
"name": "Author: KSV Muralidhar", | |
"url": "https://ksvmuralidhar.in" | |
}, | |
license_info={ | |
"name": "License: MIT", | |
"identifier": "MIT" | |
}, | |
swagger_ui_parameters={"defaultModelsExpandDepth": -1}) | |
class URLList(BaseModel): | |
urls: List[str] = Field(..., description="List of URLs of news articles to classify") | |
key: str = Field(..., description="Authentication Key") | |
class Categories(BaseModel): | |
label: str = Field(..., description="category label") | |
calibrated_prediction_proba: float = Field(..., | |
description="calibrated prediction probability (confidence)") | |
class SuccessfulResponse(BaseModel): | |
urls: List[str] = Field(..., description="List of URLs of news articles inputted by the user") | |
scraped_texts: List[str] = Field(..., description="List of scraped text from input URLs") | |
scrape_errors: List[str] = Field(..., description="List of errors raised during scraping. One item for corresponding URL") | |
category: Categories = Field(..., description="Dict of category label of news articles along with calibrated prediction_proba") | |
classifier_error: str = Field("", description="Empty string as the response code is 200") | |
class AuthenticationError(BaseModel): | |
urls: List[str] = Field(..., description="List of URLs of news articles inputted by the user") | |
scraped_texts: str = Field("", description="Empty string as authentication failed") | |
scrape_errors: str = Field("", description="Empty string as authentication failed") | |
category: str = Field("", description="Empty string as authentication failed") | |
classifier_error: str = Field("Error: Authentication error: Invalid API key.") | |
class ClassifierError(BaseModel): | |
urls: List[str] = Field(..., description="List of URLs of news articles inputted by the user") | |
scraped_texts: List[str] = Field(..., description="List of scraped text from input URLs") | |
scrape_errors: List[str] = Field(..., description="List of errors raised during scraping. One item for corresponding URL") | |
category: str = Field("", description="Empty string as classifier encountered an error") | |
classifier_error: str = Field("Error: Classifier Error with a message describing the error") | |
class InputValidationError(BaseModel): | |
urls: List[str] = Field(..., description="List of URLs of news articles inputted by the user") | |
scraped_texts: str = Field("", description="Empty string as validation failed") | |
scrape_errors: str = Field("", description="Empty string as validation failed") | |
category: str = Field("", description="Empty string as validation failed") | |
classifier_error: str = Field("Validation Error with a message describing the error") | |
class NewsClassifierAPIAuthenticationError(Exception): | |
pass | |
class NewsClassifierAPIScrapingError(Exception): | |
pass | |
def authenticate_key(api_key: str): | |
if api_key != os.getenv('API_KEY'): | |
raise NewsClassifierAPIAuthenticationError("Authentication error: Invalid API key.") | |
async def validation_exception_handler(request: Request, exc: RequestValidationError): | |
urls = request.query_params.getlist("urls") | |
error_details = exc.errors() | |
error_messages = [] | |
for error in error_details: | |
loc = [*map(str, error['loc'])][-1] | |
msg = error['msg'] | |
error_messages.append(f"{loc}: {msg}") | |
error_message = "; ".join(error_messages) if error_messages else "" | |
response_json = {'urls': urls, 'scraped_texts': '', 'scrape_errors': '', 'categories': "", 'classifier_error': f'Validation Error: {error_message}'} | |
json_str = json.dumps(response_json, indent=5) # convert dict to JSON str | |
return Response(content=json_str, media_type='application/json', status_code=422) | |
calibrated_model, label_encoder = load_model() | |
async def classify(q: URLList): | |
""" | |
Get categories of news articles by passing the list of URLs as input. | |
- **urls**: List of URLs (required) | |
- **key**: Authentication key (required) | |
""" | |
try: | |
logging.warning("Entering classify()") | |
urls = "" | |
scraped_texts = "" | |
scrape_errors = "" | |
labels = "" | |
probs = 0 | |
request_json = q.json() | |
request_json = json.loads(request_json) | |
urls = request_json['urls'] | |
api_key = request_json['key'] | |
_ = authenticate_key(api_key) | |
scraped_texts, scrape_errors = await scrape_urls(urls) | |
unique_scraped_texts = [*set(scraped_texts)] | |
if (unique_scraped_texts[0] == "") and (len(unique_scraped_texts) == 1): | |
raise NewsClassifierAPIScrapingError("Scrape Error: Couldn't scrape text from any of the URLs") | |
labels, probs = await predict_news_classes(urls, scraped_texts, calibrated_model, label_encoder) | |
label_prob = [{"label": "", "calibrated_prediction_proba": 0} | |
if t == "" else {"label": l, "calibrated_prediction_proba": p} | |
for l, p, t in zip(labels, probs, scraped_texts)] | |
status_code = 200 | |
response_json = {'urls': urls, 'scraped_texts': scraped_texts, 'scrape_errors': scrape_errors, 'categories': label_prob, 'classifer_error': ''} | |
except Exception as e: | |
status_code = 500 | |
if e.__class__.__name__ == "NewsClassifierAPIAuthenticationError": | |
status_code = 401 | |
response_json = {'urls': urls, 'scraped_texts': scraped_texts, 'scrape_errors': scrape_errors, 'categories': "", 'classifier_error': f'Error: {e}'} | |
json_str = json.dumps(response_json, indent=5) # convert dict to JSON str | |
return Response(content=json_str, media_type='application/json', status_code=status_code) | |
if __name__ == '__main__': | |
uvicorn.run(app=app, host='0.0.0.0', port=7860, workers=3) | |